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Summary 
We review principles behind the use of 'data-based' or 'bootstrap' methods of testing statistical 

hypotheses. Distinction is drawn between the motivation for such procedures, by which repre- 
sentatives of the hypothesis under test are simulated by random corruption of the sample data, and 
the estimation bootstrap of Efron (1979). A series of geometrical examples are considered and 
attention is drawn to the importance in data-based inference of preserving ancillary features of the 
data under test. 
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1 Introduction 
The aim of this paper is to review widely dispersed ideas on the use of 'data-based 

simulation' or 'random data corruption' methods of testing statistical hypotheses. 
Examples of such techniques have been considered previously by, for example, Kendall 
(1977), Besag & Diggle (1977) and Lotwick & Silverman (1982). We present our 
discussion by considering three geometrical data-analytic problems, two of them entirely 
new to the statistical literature. The solutions we obtain to these problems underline the 
importance of appropriate conditioning in this type of data analysis. In particular, we 
stress the concept of an 'ancillary data feature', as first discussed by Kendall & Kendall 
(1980). It will be argued that general theoretical development of a conditionality principle 
in the data-analytic context may not be possible, because of the difficulty of defining, in 
the absence of a fully parameterized mathematical model, what is meant by an ancillary 
statistic or feature. 

2 Data-based simulations and the bootstrap 
The bootstrap is probably most familiar as a nonparametric technique, due to Efron 

(1979, 1982), which is used primarily to estimate the sampling distribution of some 
statistic or for construction of confidence intervals for some parameter of interest. 
'Bootstrap methods', however, predate Efron's work and the term is generally taken to 
refer to any inference which derives the reference comparison sets from the original 
sample data. Indeed the bootstrap approach to data analysis is often taken to encompass 
any statistical technique where the sample data plays an interventionalist role in 
determining the form of the analysis to be applied to that same data. Most statisticians, 
for instance, would consider cross-validation studies (Stone, 1974) and shrinkage 
estimation (Copas, 1983) as bootstrap methods. 

In the light of such terminology, and in view of the simulations and random resampling 
which form their basis, the techniques discussed in this paper are certainly bootstrap 
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2 A. YOUNG 

techniques. However we prefer the language of 'data-based simulations' and 'random 
corruption' to emphasize that ours are allied techniques, rather than methods derived 
directly from the Efron bootstrap. 

Efron (1979) essentially defines a process by which a density estimate is constructed 
from a set of sample data and reference data sets are then simulated from this estimate. 
The bootstrap is strictly limited as a technique with which to test statistical hypotheses, 
because of the unconditional nature of most bootstrap simulations. In the literature, the 
only testing method which derives directly from the Efron bootstrap is the smoothed 
bootstrap procedure used by Silverman (1981) to investigate the number of modes in a 
population density. 

The aim of Efron's methodology is the definition of automatic procedures which will 
have improved estimation characteristics over those based on standard asymptotic 
normality assumptions, etc. Our motivation is somewhat different. Our methodology is 
tailored to specific data sets, and our discussion will continually focus on the particular 
characteristics of these data sets. In the use of the Efron bootstrap it is to be observed 
that not every sample will yield a dependable population estimate, precisely because the 
density estimate constructed from the specific sample data, and used to generate 
reference sets, may be a poor estimate of the underlying population distribution. Within 
the context of testing statistical hypotheses this latter point may, in the sense of some 
extended conditionality principle, be put to positive use. It is argued that there is a virtue, 
in terms of relevance of the inference to the actual data under test, in simulating 
reference data sets either from a density estimate 'close' to the sample data or directly 
from the data, rather than from some null mathematical model. 

3 Scope of data-based inference 
The data-based simulation approach is an attractive one. The direct nature of the 

techniques, ease of interpretation of results, etc., should not, however, be considered 
sufficient justification for their use. The approach will not extend to all types of statistical 
problem. Instead, the type of procedure which we envisage may serve as something of a 
bridge between the exploratory and confirmatory aspects of data analysis, allowing as 
they do largely model-free inference to be made. Data-based simulation is perhaps most 
strongly justified in circumstances, such as the asymmetry problem discussed below, 
where any mathematical model of a data-generating mechanism which may underlie our 
analysis has no physical basis in itself, but refers instead to some projective geometrical 
phenomenon. It is crucial to note, however, that the test statistic which we use will often 
be based on a parametric model, though perhaps one suggested by the sample data itself. 
Then it is only implementation of the test procedure which is direct, this being based on a 
custom-built random representation of the null hypothesis, which takes account of 
uncertainties in the mathematical model. 

Indeed, within the general class of problems which lend themselves to the data-based 
approach, we can identify three types of situation. 

(i) In some statistical investigations, prior knowledge of the substantive field will 
yield information about the form of the phenomenon to be investigated, but will 
enable us to say nothing about the data-generating mechanism itself. The 
available sample data alone must then serve at any modelling phase. Simulation 
is used in the calculation of an inferential probability, because of doubts over the 
validity of parametric models. 

(ii) In other circumstances, knowledge of the scientific background to the problem, 
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Conditioned Data-Based Simulations 3 

and the phenomenon being studied, will yield a sensible, though perhaps 
heuristic, form of test statistic without formal modelling. The simulation 
approach is used precisely because there is no parametric framework. 

(iii) A third class of problem, rather different to the first two, arises where the 
scientific background provides all the modelling input to the analysis, but where, 
for some reason, it is necessary to obtain the inferential probability by 
simulation means. 

In ? 5 we consider examples of each of the above type of problem. Though structurally 
different, the same spirit of approach underlies all three examples and this is discussed in 
? 4. 

4 Inferential procedure 
Each of the problems considered in ? 5 may be described in the following terms. We 

are given a set of data and we wish to test the null hypothesis that this data contains no 
evidence for predisposition towards some geometrical phenomenon P, this to be tested 
against the alternative hypothesis that the data does predict a frequent occurrence of P. 

Statistically, we suppose our observations Y1,..., Yn to be independent, identically 
distributed from some unknown density g(y). The scientific investigation translates into a 
statistical problem of testing consistency of the data with Ho:g E go, where 0 is a class of 
probability distributions over some appropriate space. 

Different problems will have different detailed specifications. The data-based approach, 
however, may be described simply as one which bases the calculation of an inferential 
probability upon the generation of data sets representing F0, where F0 is that distribution 
consistent with Ho which is best supported by the data, and where the sample data plays a 
central role in the specification of the simulation mechanism. 

The class A0 may be highly nonspecific. For example, in the second of our problems 
below A0 would define the class of diffuse bivariate probability densities. On the other 
hand, Ho may be simple, as would be the case with, say, a test of uniformity. 

Often initial examination of the data will suggest a parametric family of distributions 
g0= {f(y; 0); 0 e E}, which may be helpful in defining a test procedure. In such 
circumstances it would be usual to estimate the null distribution F0 closest to the data, by, 
say, maximum likelihood, and then define a test statistic T by 

T = d(F, Fo), 
where F denotes the empirical distribution of the sample data and d is some specified 
measure of distance. The function d might, for example, define a goodness-of-fit statistic 
or, if the modelling phase of the analysis defines a general class JW to which the unknown 
density g belongs, d might define the likelihood ratio or score statistic. 

Depending upon the precise form of such a parametric framework (existence of 
nuisance parameters, etc.) inferential principles will indicate a particular type of test 
procedure. It is important to appreciate, however, the philosophy with regard to such 
parametric models. The parametric family {f(y; 0); 0 e O} is not regarded as a true 
model for the data, but instead as a mathematical convenience. Often, as in our first 
example below, we will prefer a more ad hoc analysis than that indicated by standard 
parametric theory and the estimated F0. 

Suppose that we have defined some suitable test statistic T, with large values of T being 
evidence against Ho. Let x = (Y1, . .., Y,,) be the observed sample data and let 
T(x) = tobs. Then our simulation procedure is aimed at estimation of the significance 
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4 A. YOUNG 

probability 
Pobs = P(T(X) 

> 
tobs F ), 

where IF0 indicates a conditioning on F0. 
For reasons outlined above, F0 will rarely have a formal specification. The aim, 

therefore, is to implement a significance test by construction of numerous conditionally 
independent replicates X1,... , XN of the data under test, the conditioning being with 
respect to relevant ancillary features of the data. These replicates are simulated from, or 
by 'random corruption' of, the observed data x. The simple idea behind such a procedure 
is to generate from the sample data a simulation base of test statistic values which are 
taken to represent F0, that is the T-distribution that would have been obtained, in similar 
circumstances, if in fact the null hypothesis is true. The significance probability Pobs is 
estimated by 

obs = # {i: T(Xi) tobs}IN. 
The primary requirement of the simulation scheme must be to produce data sets Xi free 

of any intended effect P of the type being tested against. Simplistically, if we do not 
corrupt the sample data enough our simulation mechanism will serve only to yield data 
sets quantitatively rather too similar in nature to the data under test. The aim therefore is 
to define, perhaps in the form of some conceptualized metric, a criterion based on the 
phenomenon P being studied, which allows us to specify when a simulated data set is 
sufficiently different from the observed data configuration to be considered free of any 
planned P. In effect we 'stratify' the space of all possible simulation samples. Only those 
simulation samples which are free of any intended effect and which are consistent with the 
data are to be used to represent Ho0. 

Data-based inferential procedures of the above type obtain their operational substance 
through frequency in a series of simulations. It is often argued that frequentist inferences 
are inadequate because of the need to choose, in order to obtain an inferential 
probability, a reference set for the sample prior to the data analysis itself. Hinkley (1983) 
argues that the general concept of ancillarity is integral to statistical inference and that 
proper observance of the conditionality principle can lead to sensible frequentist 
procedures. Any conditional inference will, of course, allow the data to choose a 
reference set for the sample. The random data corruption simulation method, however, 
goes somewhat further. If properly modulated, the simulation mechanism, which may, if 
we are working in a parametric framework, have been defined in such a way as to provide 
exact conditioning on an ancillary statistic, will allow at least approximate conditioning on 
features of the data set which may, on scientific grounds, be thought of as important in 
defining a relevant reference set. 

5 Examples 
Example 1. Our first example is considered at greater length by Kendall & Young 

(1984) and arose from a paper by Birch (1982). We are concerned in this problem with a 
set of astronomical objects known as classical-double radio-sources. With each such 
source is associated an angular measurement or 'indirection' A. By the term indirection 
we mean the ambiguous directional information contained in an undirected line or axis. 
Birch's contention was that of a topographic variation in the distribution of this 
measurement. We can think of A as a point in one-dimensional real projective space p1, 
though it is more convenient to work with 2A as a point on the unit circle S1. Our set of 
observations is then 

((p/, 
2Ai): i = 1,..., n), where n = 134 and p = (pil), p$2), p!3)) is 
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Figure 1. Histogram of A-values, with fitted indirectional version of von Mises distribution shown by circles; 
estimated a! = 0-703, n = 134. 

the unit position vector of the ith source on the celestial sphere S2. In this problem our 
analysis must proceed only from the postulation of two probability measures for (p, 2A), 
one corresponding to the absence of a topographic regression of 2A on p and the other to 
a positive Birch effect. 

An adaptation of the familiar von Mises density, 
exp (oa cos 2A) dA (-1r 

< 
A 1.7), (1) 

•rI0(ct) 
describes a simple nonuniform indirectional distribution symmetrical about A = 0. Figure 
1 shows a histogram of the overall ensemble of 134 A-values. Superimposed on this 
histogram is a fit of the indirectional version (1) of the von Mises distribution. The figure 
makes clear that the marginal A-distribution is roughly of this type and such a distribution 
is therefore taken as our null, position independent, model. Kendall & Young (1984) 
argued that, if the asymmetry is to be controlled by a topographic regression, the 
distribution of A conditional on the position of the radio-source will have density 
approximately of the form 

exp (av cos 2A + ( . p) sin 2A) dA. (2) 
tIro{1/[cr2 + ( p)2] 

Here, as in (1), I1 is the zero-order modified Bessel function of the first kind, while p is 
the position of the source and I a directional vector parameter whose modulus f = II 
measures the strength of the Birch effect. In order to complete the mathematical 
formulation of the problem, we must incorporate into both our null and alternative 
models a factor f(p) dp to describe the distribution of source positions p on S2. It is our 
contention, however, that it is wholly inappropriate to specify any simple form for f and 
that our statistical analysis should condition upon the observed assemblage of positions pi, 
for these are more descriptive of the positioning over the Earth of radio-observatories 
than of any astronomical phenomenon. 
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6 A. YOUNG 

To test the null model (1) against the alternative model (2) we can construct the usual 
likelihood ratio statistic by writing down the log likelihoods Lo and L1 for the data with 
respect to the two models and maximizing each with respect to their relevant parameters. 
Our test statistic is then T = max L1 - max Lo. Maximization of Lo is trivial, while 
maximization on the alternative hypothesis is straightforward, though time-consuming, 
provided the sources do not all lie on a single great circle. If the sources do all lie on a 
single great circle the log likelihood L1 may not have a unique maximum. 

Wilks' Theorem tells us that the statistic T will have an asymptotic 
12 

distribution on 
the null hypothesis but it is not clear how close to the asymptote we will be in the present 
application, where we have 134 observations. It is convenient to make a first-order 
approximation to the modified Bessel function Io: with this approximation the problem of 
global maximization linearizes, yielding an approximation T1 to the test statistic T which is 
more readily calculated in a series of simulations. If A is the sum-of-squares and products 
matrix of the source positions pi, 

ajk = p)p(k) (j, k = 1, 2, 3) 

and B = A-1, so that B exists provided the sources do not all lie on a great circle, then the 
first-order statistic is given by 

Ti = lvTBv. 
Here v is the vector with components vj = 2 E py) sin 2Aj (j = 1, 2, 3). For the sample 
data we find T1 = 7-32. 

To represent the null hypothesis of no intended topographic variation we sample from 
the permutation distribution of the data by uniformly randomly scrambling the Ai 
amongst the source positions pi. In this way data sets are produced which preserve the 
source positions and the overall assemblage of observed A1; see Fig. 1. 

Figure 2 is a histogram of the 
Tl-values 

for a series of 10,000 such simulations. It is left 
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Figure 2. Histogram of T1-values for 10,000 permutations of observed data configuration. The T1-value for the 
observed data is shown by an arrow and equals 7.320. Asymptotic distribution shown by circles. First-order 
solution, n = 134. 
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Conditioned Data-Based Simulations 7 

to the reader to decide whether this follows the asymptotic 2 curve; our simulation test 
yields a Pobs-Value of the order 0-0005. 

Notice that our interpretation of the test statistic value is by a standard permutation 
test. This procedure, and the use of a statistic T1 which is only a very crude approximation 
to the log likelihood statistic, is entirely deliberate and is made in view of the unverifiable 
nature of our statistical models. 

Of course, if we really believed the parametric model (2) a refined test procedure 
would be appropriate. The obvious approximation to the log likelihood statistic to use in 
a series of simulations, since it only requires maximization on H0, is the score statistic (Cox 
& Hinkley, 1974, pp. 323-324). In the current problem this is defined by 

lo0 A & ) S = 
0Io 

T Ii(&0) ' 

where a0 is the maximum likelihood estimator under Ho: f = 0 and I, is the first-order 
modified Bessel function. The data value of this score statistic is 15-53. Now, of course, S, 
rather than 2S, is to be compared with X2. Notice also that, for the randomization 
procedure we have used in our simulations, use of T1 is equivalent to the use of S. In 
addition, a simulation analysis which makes full use of the parametric model would use 
direct simulation from the null model, rather than data permutation. It is not clear, 
however, if it is possible to condition simulations from the von Mises density (1) on the 
sufficient statistic, E cos 2Ai, for the nuisance parameter a. A fully parametric analysis 
would, in any case, calculate the Bartlett correction factor to the log likelihood statistic to 
take account of the finite sample size, rather than use simulations. 

Example 2. Our second example is already very familiar, at least in the archaeological 
context (Kendall & Kendall, 1980), though it certainly remains a very illuminating and 
instructive problem. Astronomical interest in the problem was kindled by Arp & Hazard 
(1980), who drew attention to a curious geometrical configuration of quasars, or Qsos, 
involving near collinearity of triplets of such objects. 

In effect we are presented with a set of points Y1, Y2, * 
?, 

Y, in the plane. We say that 
three such points Y1, Yj and Yk are 'E-collinear' if they form a triangle with largest angle 
>t - E. Of the "C3 triangles formed from the n points, some number, NCOLL say, will be 
E-collinear. Intuitively, NCOLL Will serve as a test statistic for a test of the null hypothesis 
that the observed collinearities are due to chance against the alternative hypothesis that 
there are too many E-collinearities for these all to be accounted for by chance, with large 
values of NCOLL rejecting Ho0. 

Notice that we deliberately skirt here the problem of the value of the tolerance angle E, 
by assuming it to be known. This may indeed be the case. Otherwise, if E is not given, a 
more sophisticated analysis is necessary. For details see Kendall & Kendall (1980). At any 
rate a point to be stressed is that, in contrast to our first example, the nature of the 
phenomenon under study is such that it gives rise to a natural test statistic without formal 
modelling. The difficult part of the analysis lies in the specification of the mechanism by 
which we obtain our data corruptions or 'random lateral perturbations'. It is possible to 
define a measure of similarity between the observed data configuration x and a perturbed 
data set X in terms of the number of E-collinearities the two configurations have in 
common. Random lateral perturbations ought to destroy all, or nearly all, of the existing 
near collinearities. There is clearly no unique way in which this can be achieved, though 
some corruption schemes may seem more appealing than others, in the way in which they 
preserve the coarse data-structure. 

The most obvious corruption scheme is one in which each data point Y• 
is perturbed 
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8 A. YOUNG 

independently by a random quantity (C, ri) drawn from a bivariate Gaussian distribution 
with density of the form 

1 /1 1 

e2xp 2 2 2 d dr . (3) 
2,7raxa2 \2 2 )d2 

For many practical purposes it may be suitable to take aO = a2, the common value being 
set in order to destroy the existing collinearities. 

Figure 3(a) shows a configuration of 74 points over the unit square. This data is the 
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Figure 3(a). Locations, on unit square, of 65 Japanese pine saplings (Diggle, 1983), with 9 artificial points on 
regular lattice. 

Figure 3(b). Configuration obtained from Fig. 3(a) by independent Gaussian perturbation of each point, with 
Oa = C2 = 0'01. Unit square wrapped onto torus. 

Figure 3(c). As Fig. 3(b), with a, = a2 = 0-1. 
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Japanese pine sapling data listed by Diggle (1983, p. 128), into which have been placed 9 
points on a regular lattice. The artificial grid provides 8 exact three-point collinearities, as 
shown. In total there are some 389 10-collinearities in the overall configuration of 74 
points. Figure 3(b) shows the same configuration after each data point has been perturbed 
according to the density (3) with aO = o2 = 001. Of the 8 planned alignments only 1 
remains a 10-collinearity. In addition, the overall pattern remains, in its coarse structure, 
qualitatively the same as the original data. Figure 3(b), therefore, is a suitable data set by 
which to represent the null hypothesis of no planned alignments. By contrast, Fig. 3(c) 
illustrates what happens with al = a2 = 0-1. The perturbations have now produced a data 
set which is not only geometrically, but also topologically, different from the original 
data: the clusters discernible in Fig. 3(a) have been destroyed. The data has been 
over-perturbed. 

It is of interest to note that Figs. 3(b) and (c) contain 361 and 387 10-collinearities 
respectively. Comparison of these figures, and values obtained for other perturbed data 
sets, with the original number 389 provides a warning about this type of data-specific 
procedure. Had we not known about the presence of planned alignments, it is possible 
that our method would not have been able to detect them. The signal provided by the 
artificial construct may be swamped by noise from the rest of the data. In a sense, 
therefore, the test scheme we have described has little power against alternatives of the 
type provided by the 8 'faked' alignments. 

In the above illustrative example the data points fall in a well-defined region. This was 
taken account of in the simulations by treating the unit square as a torus. In other 
examples, the points will fall in some undefined area. Then the region covered by the data 
points in a corrupted data set ought to display a similar degree of elongation to that for 
the actual data. This can be effected by using a Gaussian scheme of the type (3), but with 
component standard deviations proportional to those for the observed data set, as was 
done by Kendall & Kendall (1980). In this way corrupted data sets will approximately 
preserve the ratio of principal standard deviations for the actual data. If it is desired, after 
corruption the whole configuration can then be rescaled in order to preserve the value of 
this ancillary statistic exactly. 

Example 3. Our third example arises out of a study into the orientation of spiral 
galaxies within a cluster of galaxies, which includes our own, known as the 'Local 
Supercluster', and relates to the question of galaxy cluster formation. 

For our purposes spiral galaxies may be viewed as flat, circular discs. A quantity known 
as the 'angular momentum' or 'spin' vector of the galaxy points in a direction normal to 
the plane of the disc, the direction of rotation defining the sense of this normal by, say, a 
right-hand rule. The direction of the spin vector describes a random quantity, a say, with 
distribution on S2 

Under the gravitational instability model for galaxy cluster formation orientations of 
galaxies are completely random, so that a is uniformly distributed on S2. The 
cosmological turbulence theory suggests that galaxies become preferentially aligned with 
their discs parallel to the plane of the cluster itself, which we can identify with the 
equator, Z = 0 say, of the celestial sphere S2. In these circumstances a will have a bipolar 
distribution over S2, with modes at Z = +1 and Z =-1. The theory of adiabatic 
fluctuations suggests that galaxies become aligned perpendicular to the major plane of the 
cluster, in which case a has an equatorial girdle distribution over S2 

Our problem is set apart from conventional problems in directional statistics by the 
projective nature of the observations. Given only the projected image of a galaxy, it is 
nevertheless possible to attach to the galaxy two undirected normals and to say that the 
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true spin vector points in some direction along one of these two indirections. Since spiral 
galaxies are known to rotate with their arms trailing, observation of the spiral winding 
direction of a galaxy (whether the galaxy appears as an S-spiral or a Z-spiral) enables us 
to reduce this four-fold ambiguity in spin direction to a two-fold ambiguity. We are 
presented, therefore, with a set of 'data' {(pi, ai, ou), i= 1,..., n} on n galaxies. Here 
pi E S2 describes the known position of the ith galaxy on the celestial sphere, while the 
true spin vector is either aI or o~. 

A possible approach to analysis in this problem is outlined below. This is not, of 
course, the only possible analysis, but is presented to make a number of points about 
data-based inference. In the analysis data-based simulations must be used as a means of 
recapturing the ambiguous nature of the sample data. 

It is readily seen that the second possible spin direction uo is the 'reflection' of the first 
direction aI in the indirection defined by the line-of-sight pi to the galaxy, so that 

of = 2(pi - o))pi - o1. (4) 

It is clearly crucial that our statistical analysis should condition upon this relationship. 
The simplest probability distribution describing girdle and bipolar alternatives to 

uniformity on the sphere is the Dimroth-Watson distribution, which has density of the 
form 

b(K) b()exp (-K(X - P)2) (5) 
2,7t 

with respect to the uniform measure on S2. For K >0, expression (5) represents a 
distribution rotationally symmetric about the unit direction Ai and concentrated around 
the great circle in the plane orthogonal to p, while for K <0 it represents a bipolar 
distribution rotationally symmetric about Cp. By treating the ambiguity in spin direction as 
an unknown parameter, to be maximized over on the null and alternative hypotheses, we 
may use (5) to construct a test statistic for, say, a test of uniformity of galactic 
orientations against the equatorial girdle alternative. In doing so we make an assumption 
of independence of ambiguous pairs of spin vectors. While such an assumption is 
questionable, it does not affect the data-based approach to significance testing. 

Let ai (= 1 or 2) be a label indicating the true (but unknown) spin vector for the ith 
galaxy, and write uo= (xv, y?, zr), ca= 1, 2. Then to test against an equatorial girdle 
effect a suitable test statistic is obtained by maximizing 

T(K) = -n log J(K) - KS 

with respect to K, where 
S = min X (z'))2 

and J(K) is the integral f e-'t2 dt over the range (0, 1). That a unique such maximizing K 
exists follows from a simple application of the Schwarz inequality. If we denote the 
maximum likelihood estimator of K by k, our test statistic is then T = -n log J(k) - kS. 

Existing asymptotic theory is not applicable in this example and the null distribution of 
T is unknown. Unless we are to develop some new theory, it seems necessary, therefore 
to assess the significance of the observed value of this test statistic by data-based 
simulation means. We believe the appropriate simulation base of T-values representing 
the null hypothesis to be constructed by the following scheme. 

On each simulation we keep the galaxy positions pi fixed, and simulate, for each galaxy, 
a first possible spin vector a1 by drawing from the null (in this case uniform) distribution 
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Figure 4. Null sampling distribution of test statistic for galactic orientation problem. The value for the observed 
data is shown by an arrow. 

on S2. Given this first spin vector, and the source position pi, a second possible spin 
vector is got from the 'ambiguity specification' (4). This procedure gives us a complete set 
of ambiguous data for which T can be calculated as before, the whole process being 
repeated some appropriately large number of times. 

We have applied the above procedure to data on n = 434 spiral galaxies. This sample 
delimits the Local Supercluster on the basis of a magnitude criterion and gives a test 
statistic value of T = 41-3. This value is found to be significant at about the 2.5% level 
when assessed against 2,500 simulations. Figure 4 gives an indication of the null sampling 
distribution of our test statistic in this example. 

It has been pointed out that ambiguous observations (a1, u/) 
corresponding to galaxies 

seen nearly face on in the line-of-sight are more likely to be subject to measurement error 
than are those for spiral galaxies seen nearly edge on. An alternative simulation scheme, 
which uniformly scrambles the projected galaxy images amongst the source positions pi, 
provides a means of conditioning on the number of galaxies seen face on, nearly face on, 
etc. However, in the current example it is precisely the number of nearly face-on galaxies 
which, in view of the geometrical disposition of the pi over S2, contains most information 
on the effect being tested against. The source positions pi are themselves clustered around 
the equator of S2. It should be clear that these positions, in conjunction with a real 
equatorial girdle effect, would be expected to produce a large number of nearly face-on 
galaxies in the sample. It would therefore be improper to condition on this number. 

This latter point serves as a reminder that there will be circumstances where an 
otherwise appealing simulation or perturbation mechanism in practice only produces data 
sets which, in terms of evidence for the phenomenon of interest, are too similar to the 
actual sample data. The corruption scheme which we utilize must corrupt the specific 
sample data and not merely some hypothetical data set which might have been observed. 
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6 Discussion 
Classical statistical inference is based on an approach in which evidence in a unique set 

of data is assessed via long-run frequency in a series of hypothetical repetitions. Within 
this sampling theory approach to statistics strong arguments exist which suggest that 
parametric inference ought to be made conditional on the observed value of some 
ancillary statistic. Much discussion of ancillarity, however, is clouded by problems of 
mathematical definition. We wish to stress here, within the data-analytic context, the role 
of ancillary statistics in defining a 'relevant subset' of the sample space for the problem, to 
which the inference should be restricted. Appropriate conditioning on ancillary statistics 
is to be seen as important as a means of making the inferential process as relevant as 
possible to the data under test. 

In our bootstrap or data-based approach to testing statistical hypotheses the observed 
value of the test statistic for the unique sample data is now to be assessed by performing a 
series of actual repetitions. The conditioning arguments are still valid. Our preceding 
discussion and examples should make it clear that the term 'relevant' is now to have its 
interpretation in terms of a conditioning upon those ancillary features of the data under 
test which control the propensity for fictitious occurrences of the effect being tested 
against. Such features may or may not be quantifiable as ancillary statistics. Much of the 
appeal of the direct simulation methods discussed in this paper derives from their 
enabling such features to be preserved in a natural way. The idea is to condition, at least 
approximately, on those features of the data which reflect the tendency for extreme 
values of the test statistic to occur for artificial or frivolous reasons. This idea of 
approximate conditioning has also been put forward by Cox (1984), though in a different 
context. 

In the asymmetry example the source positions clearly say nothing about the existence 
of a topographic regression, and it is for this reason that we condition upon them. It is 
less certain that we should condition upon the overall assemblage of Ai, rather than 
merely simulate data sets from the null von Mises distribution. Obvious arguments make 
clear the need to condition on the galaxy positions in the galaxy orientation example, 
whilst we have already considered reasons for conditioning in the collinearity example. 

In a particular application there will be features of the data under test (specific sorts of 
clumpiness, clustering, etc.) which are not readily quantifiable as ancillary statistics, but 
which it is nevertheless felt should be conditioned on. The ambiguous nature of the data 
in the galactic orientation problem, and its specification by (4), are further examples of 
such data features. Such features may be expressible as functionals of the data-generating 
distribution (number of modes, etc.). It is worth noting that Silverman (1981) makes 
implicit use of the idea of conditioning on such functionals when he rescales the density 
estimate constructed from the data to have variance equal to the sample variance. 
Intuition and scientific collaboration seem the only way of deciding features to be 
conditioned on. This requirement of extra input to the analysis, beyond that necessary for 
modelling or determination of a suitable test statistic, probably means that complete 
formalization of this 'conditionality principle' will not, in general, be possible. Objective 
conditioning within certain parametric classes of problem ought to be possible, but to 
restrict attention purely to such problems is to ignore the flexibility of the bootstrap 
approach to a wide variety of otherwise intractable problems. 

Acknowledgements 
I should like to thank David Kendall and Bernard Silverman for many rewarding discussions on the ideas put 

forward in this paper and the referees for their constructive comments. This work was carried out whilst in 
receipt of a Research Studentship from St John's College, Cambridge. 

This content downloaded from 128.252.67.66 on Fri, 11 Sep 2015 00:16:09 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Conditioned Data-Based Simulations 13 

References 

Arp, H. & Hazard, C. (1980). Peculiar configurations of quasars in two adjacent areas of the sky. Astrophys. J. 
240, 726-736. 

Besag, J. & Diggle, P.J. (1977). Simple Monte Carlo tests of spatial pattern. Appl. Statist. 26, 327-333. 
Birch, P. (1982). Is the universe rotating? Nature 298, 451-454. 
Copas, J.B. (1983). Regression, prediction and shrinkage (with discussion). J. R. Statist. Soc. B 45, 311-354. 
Cox, D.R. (1984). Discussion of paper by F. Yates. J. R. Statist. Soc. A 147, 451. 
Cox, D.R. & Hinkley, D.V. (1974). Theoretical Statistics. London: Chapman and Hall. 
Diggle, P.J. (1983). Statistical Analysis of Spatial Point Patterns. London: Academic Press. 
Efron, B. (1979). Bootstrap methods-another look at the jackknife. Ann. Statist. 7, 1-26. 
Efron, B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans, monograph 38. Philadelphia: 

S.I.A.M. 
Hinkley, D.V. (1983). Can frequentist inferences be very wrong? A conditional "yes". In Scientific Inference, 

Data Analysis and Robustness, Ed. G.E.P. Box, T. Leonard and C.F. Wu, pp. 85-103. New York: 
Academic Press. 

Kendall, D.G. (1977). Hunting quanta. In Proc. Symp. to honour J. Neyman, Ed R. Bartoczynski et al., pp. 
111-159. Warsaw: Polish Scientific Publishers. 

Kendall, D.G. & Kendall, W.S. (1980). Alignments in two-dimensional random sets of points. Adv. Appl. 
Prob. 12, 380-424. 

Kendall, D.G. & Young, G.A. (1984). Indirectional statistics and the significance of an asymmetry discovered 
by Birch. Mon. Not. R. Astr. Soc. 207, 637-647. 

Lotwick, H.W. & Silverman, B.W. (1982). Methods for analysing spatial processes of several types of points. J. R. 
Statist. Soc. B 44, 406-413. 

Silverman, B.W. (1981). Using kernel density estimates to investigate multimodality. J. R. Statist. Soc. B 43, 
97-99. 

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. R. Statist. 
Soc. B 36, 111-147. 

Resume 
Nous passons en revue les principes sur lesquels reposent les m6thodes '" base d'6chantillons' ou 'bootstrap' 

de v6rification d'hypoth6se en statistique. Nous faisons une diff6rence entre la motivation pour de telles 
proc6dures, oii des repr6sentants de l'hypoth6se soumise a verification sont simul6s par une falsification des 
donn6es d'6chantillon pr61lev6s au hasard, et les m6thodes de calcul bootstrap d'Efron (1979). Des exemples 
g6om6triques sont pris en consid6ration et nous attirons l'attention sur l'importance de garder les traits 
auxiliaires des 6chantillons soumis a verification dans l'inf6rence ' base d'6chantillons. 
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