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A note on bootstrapping the correlation coefficient

BY G. A. YOUNG
Statistical Laboratory, University of Cambridge, Cambridge, CB21SB, U.K.

SUMMARY

Smoothed bootstrap estimation of the sampling standard deviation of the variance-stabilized
correlation coefficient is reconsidered. An approximation to the mean squared error of the bootstrap
estimator is obtained and an empirical procedure for choosing the degree of smoothing in the
bootstrap estimation is presented. Performance of the procedure is examined in a simulation study.
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1. INTRODUCTION

Silverman & Young (1987) discuss use of the smoothed bootstrap for estimation of the sampling
standard deviation of the variance-stabilized correlation coefficient in bivariate samples and
examine, from a theoretical viewpoint, circumstances when some smoothing is advantageous in
the bootstrap estimation. In the present paper the analytical tools used in that investigation are
applied to estimate the mean squared error of the bootstrap estimator and to define a procedure
for empirical choice of the degree of smoothing. The procedure is illustrated in a small simulation
study.

2. BOOTSTRAPPING THE CORRELATION COEFFICIENT

Use of the bootstrap in estimation of the sampling properties of the correlation coefficient has
been discussed previously by, for example, Efron (1982), Dolker, Halperin & Divgi (1982),
Schluchter & Forsythe (1986) and Silverman & Young (1987). When interest is in comparing the
correlation parameters for a number of independent populations, it is important to be able to
attach a standard error to a point estimate of such a parameter. The bootstrap and smoothed
bootstrap are convenient tools for such standard error estimation. The smoothed bootstrap may
be a substantially more accurate estimation procedure than the standard, unsmoothed, bootstrap;
see Efron (1982, Table 5.2). The aim is to have some means of choosing, from the sample data
itself, an appropriate degree of smoothing.

Details of the smoothed bootstrap procedure based on a kernel density estimator with the same
variance structure as the sample data are given by Silverman & Young (1987). Given data with
variance matrix V, the procedure requires choice of a symmetric probability density function K,
with unit variance matrix, as kernel and a nonnegative smoothing parameter h. The case h = 00
corresponds to the standard bootstrap.

Following Silverman & Young (1987), let Fo be a bivariate distribution with mean zero and
correlation p. Let r be the correlation coefficient based on a sample of n independent observations
from Fo and let z = tanh~' r: the quantity to be estimated is an(F0) = {varfb(z)}i. Let

where fiy = J x\x{ dF0(x). As regards choice of degree of smoothing, estimation of an(F0) is
approximately equivalent to that of a(F0), since an(F0) = n"1a(F0)+ O(n"3/2).
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Let X = (Xu X2) be a random vector with distribution Fo and set

•-[: X :T-
where c7-̂  = varfi)(X,), o-^var^ (X2) and p = con>b {Xx, X2)- Consider the transformation Y =
(Yu Y2) = S~lX and let mIJ = EF.(Y[Y{), where F* denotes the distribution of Y induced by
that of X. Define the function as(u) by

m22(u?+1*2) - (»»I3 + m3I)uiii2}, (2-1)

with/3o={2a(F0)r'.
The mean squared error of the smoothed bootstrap estimator of a(F0) is, for any choice of

smoothing parameter h, to OP(/J~') , the same as that of the linear estimator

W (2-2)

of A(F0) = J a(t) dF0(t). Here X, denotes the ith data point and

w*(x) = J a{(l + h2T\x + hVi€)}K(€) dl

with a(Su) = as(")- Assume henceforth that V is the fixed variance matrix of Fo.
Using (2-2), the mean squared error of A(F0) may, after the transformation, be expressed as

MSE{A(F0)} = [f^{w**( Y)}-A(F0)f+ n"1 varr.{>v*»( Y)}, (2-3)

where

= J
It is easily shown from (2-1) that for the Gaussian kernel K

l+ cicbl+falyl + cl-m

- mu)c\{y\- yl)-2m22c\-{mn + mix)c\yxy2}, (2-4)

where c, = (1 + /i2)"* and c2 = hct.
Use of the computer algebraic manipulation package REDUCE, combining of (2-3) and (2-4),

shows that, apart from the multiplicative factor pi, not depending on h, the mean squared error
of A(F0) has the form

6+yXl (2-5)

where

y ,=4n(m 2 2 - l ) 2 , y2

7i = 4m33(m,3 + m31) -4 (m 1 3 + m31)
2.
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3. EMPIRICAL SMOOTHING PROCEDURE

Now suppose data Xlt..., Xn, from some completely unspecified distribution F o , are given.
Let X be the mean of the X, and let v\, a\, p be estimates of the marginal variances and correlation
of Fo .

Set

5 =

and let Y, = (Yu, Y2i) = S~1(Xi-X) (i = l , . . . , n ) . Compute the sample moments my =
n~l I Y\m Y{m. Substitution of these moments, and p, into (2-5) yields a function of the smoothing
parameter h which serves as an estimate of the mean squared error of the bootstrap estimator.
The proposed procedure is that the choice of h for the bootstrap estimation itself should minimize
this estimated mean squared error. The minimization is easily performed numerically: the REDUCE

package will automatically produce the FORTRAN code for evaluation of the mean squared error
function.

4. SIMULATION

Performance of the procedure for choice of smoothing was studied for data sets of three sizes,
n = 10, 20, 50, generated from three bivariate distributions: Gaussian, log normal and t. Random
observations from the latter two distributions can be generated via the first. If Y = (YU Y2)~
N2(n,n) and u, = ev ' , u2 = eYl, then u = (uuu2) has a bivariate log-normal distribution. If
Y~N2(n,Cl) and W~xl, independently of Y, and u, = YJ(W/k){, u2= YJiW/k)*, then u
has a bivariate t distribution on k degrees of freedom. All simulations were based on the bivariate
Gaussian distribution of mean zero, unit variances and correlation \. The NAG subroutine library
was used to generate univariate variables and a linear transformation method used to produce
bivariate Gaussian samples. The study included the t distribution on (i) 10 degrees of freedom,
and (ii) 3 degrees of freedom: in the former but not the latter case all the moments of (2-5) exist.
Table 1 shows, for each combination of distribution and sample size, the root mean squared error
of the estimators of an(F0) obtained over 500 replications, for both the standard bootstrap and
the smoothed bootstrap with automatic choice of h. All bootstrap estimators were calculated on
the basis of 200 resamples. All figures in Table 1 have standard errors in the range 00002 to 00008.

In this study, where choice of h was by numerical minimization, using a NAG routine, of the
estimated mean squared error function, automatic smoothing added about 8% to the computational
load in calculating the bootstrap estimator for sample size 10. For sample size 50, the increase
in computational load is only some 2%.

In small bivariate samples computational degeneracies of the type discussed by Dolker et al.
(1982) and Schluchter & Forsythe (1986) may occur, when standard bootstrap samples have 2 or
fewer distinct points. For small sample sizes, the smoothed bootstrap will prevent such

Table 1. Estimates of root mean squared error of bootstrap estimates of an(F0);
sample size, n; standard and automatic choice of smoothing parameter h

10

20

50

h

Standard
Automatic
Standard
Automatic
Standard
Automatic

Gaussian

00927
00336
00467
00252
00198
00141

Distribution

Log normal

01397
01468
01156
01147

00845
00882

i

(lOd.f.)

01092
00548
00603
00399
00322
0-0278

(3d.f.)

01639
01636
01436
01458

01179
01241
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degeneracies. However, since our purpose is to compare the standard and smoothed bootstrap
procedures in circumstances where they are genuine competitors, we take sample size 10 as the
smallest where no smoothing is needed.

5. DISCUSSION

When using the smoothed bootstrap to estimate the standard deviation of the transformed
correlation coefficient, the optimal degree of smoothing will depend on the underlying distribution
and it is important to have some empirical procedure for choosing the amount of smoothing
applied. The linear estimator (2-2) and computer algebra yield a closed form approximation to
the mean squared error of the smoothed bootstrap estimator, valid for all h. This expression
furnishes a data-driven procedure for choosing the degree of smoothing in general bivariate
samples which costs little computationally compared to the bootstrap estimation itself.

In the situation where the underlying distribution is Gaussian or nearly Gaussian, use of the
procedure can lead to substantially more accurate estimation, particularly for smaller sample
sizes. In these cases, the improvements due to smoothing decrease with the sample size. In the
situation where the underlying distribution is far from Gaussian, smoothing is less effective and
may indeed lead to less accurate estimation.

Detailed study of the simulation results shows that the smoothed bootstrap works by reducing
the variance of the estimator at the expense of increasing the bias. Smoothing is only really
effective in circumstances where this variance dominates the squared bias of the bootstrap
estimator, as in the Gaussian case for smaller sample sizes. When the bias is large, as in the cases
of the log normal distribution and t distribution on 3 degrees of freedom, smoothing has little
effect on the bootstrap estimation. If the bootstrap is to be applied to data samples which look
very non-Gaussian, it would presumably be advisable to choose the degree of smoothing with
reference to some fitted parametric family of distributions, though the question arises as to whether
we would really be interested in correlation parameters in such circumstances.
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