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1. INTRODUCTION

This paper reviews aspects of the smoothed bootstrap approach to stat-
istical estimation.

The basic problem underlying the bootstrap methodology is that of pro-
viding a simulation algorithm which produces realisations from an unknown
distribution F, when all that is available is a sample from ~ The
bootstrap of Efron (1979) simulates, with replacement, from the observed
sample. The smoothed bootstrap, discussed by Efron (1979, 1982) and Silver-
man and Young (1987), smooths the sample observations first and hence
effectively simulates from a kernel estimate of the density f underlying
F. This is achieved, without construction of the kernel estimate itself,
by resampling from the original data and then perturbing each sampled point
appropriately.

The bootstrap and smoothed bootstrap will be considered as competing
methods of estimating properties of an unknown distribution F. Given a
general functional a , which may relate to the sampling properties of a
parameter estimate, it is required to estimate on the basis of a set of
sample data the population value a(F) of this functional.

The standard bootstrap estimates a(F) by a(F) , F denoting the
n n

empirical c.d.f. of the sample data. The smoothed bootstrap estimates a(F)
by a(F) ,where F is a smoothed version of F

n
The simple idea under-

lying the bootstrap estimation, therefore, is that of usinR P
n

or F as

a surrogate or estimate for the unknown F In many circumstances the
bootstrap estimate will itself be estimated by resampling from F

n
or F

though as yet unpublished work by Davison and Hinkley points in the direction
of ~bootstrap resampling without the resampling'.

Though conceived by Efron (1979) as a means of tackling complex estim-
ation problems, for a discussion of smoothing there is some advantage in
studying the very simplest case where the functional a is linear in F.
Relevant questions to be considered are:

(1) When is it advantageous to use a smoothed bootstrap rather than the
standard bootstrap?

(ii) How should the smoothing be performed? Is there any advantage in
simulating from a 'shrunk' version of the kernel estimator, with the
same variance structure as the sample data?

(iii) Is it possible to define data-driven procedures which will choose the
degree of smoothing to be applied automatically?
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2. SMOOTHED BOOTSTRAP PROCEDURE

Suppose Xl' ""Xn are independent realisations from an unknown r-

variate F. Assuming F has a smooth underlyinR densitY
A

f a convenient

smoothed bootstrap is obtained from the kernel estimator f
h

of f
defined by ,5

(2.1)

-1
n

n
h-r L

1=1

Here K is a symmetric probability density function of an r-variate dis-
tribution with unit variance matrix. Operationally V is taken as the
variance matrix of the sample data and h is a parameter defining the
degree of smoothing.

Realisations generated from f
h

have expectation equal to X J the

meaD of the observed sample, but smoothing inflates the marginal variances.
Silverman and Young (1987) give a number of simple examples which show that
smoothing of this type can have a deleterious effect on the bootstrap estim-
ation: see also section 3. The kernel estimator f

h
is therefore 'shrunk'

to give an estimator f with second-order moment properties the same as
h,s _ 2 !

those in the observed sample. Note that the mean of f is Xj(l+h) .
h,s

3. LINEAR FUNCT10NALS

For a linear functional a(F) = f a(t)dF(t) r the smoothed bootstrap

estimator is dh(F) = f a(t)f (t)dt This estimator may be written
h,s

1
n

&h(F) L w*(X
i
)

n
1=1

where

w*(x) = J a{(1+h2)-! (X+hV!o)} K(o)do

(3.1)

Using a Taylor expansion of a
K • the mean squared error of

and the assumptions on the kernel function
dh(F) may, for h small, be expanded as

(3.2)

Here we have assumed that V rv
ij
] is a fixed positive definite symmetric

matrix and

C =1. J (a(t) _ ~)2 dF(t) ,o n

1 J (a(t) - ~} aO(t)dF(t) ,
n
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C2
1
[ 2 f {a(t)-~} a**(t)dF(t)

1 f a*(t)2dF(t)+-
n 4

1
(n-l) ( f a*(t)dF(t) )2 ]+ 4

where ~ = f a(t)dF(t) ,

a*(t) = D
V
8(t) - t·Va(t)

a**(t)

Here Dya(t) = I l: y .. 02a(t)/ot ot
ji j ~J i

(H ). = 02a(t)/ot dt .
a l.j i J

See Silverman and Young (1987) for details of the manipulations.

The expansion (3.2) immediately gives the result:

Lemma

Provided a(X) and a*(X) are negatively correlated,
error of the smoothed bootstrap estimator dh(F) of a(F)

than that of the unsmoothed estimate do(F) = f a(t)dFn(t)
h > 0 .

the mean squared
will be less

, for some
n

The corresponding result for the bootstrap estimator

f a(t)fh(t)dt • constructed from the unshrunk kernel estimator, requires

seX) and D
V
8(X) to be negatively correlated.

As a simple example, suppose F is the univariate standard Gaussian
distribution and let aCt) = t5. With V = 1 we have,

cov{a(X) ,a*(X)} < 0

cov{a(X) ,Dya(X)} > 0

so that smoothing, with shrinkage, is of potential value in bootstrap estim-
ation of the fifth moment.

The lemma above states that if C
1

< 0 in (3.2) some small degree of

smoothing at least is worthwhile. If also C
2

< 0 we might speculate that

some larger degree of smoothing may be appropriate. If both C
I

> 0 and

C2 > 0 the appropriate bootstrap estimator is the unsmoothed estimator

&O(F) Otherwise, the optimal smoothing parameter. in the sense of minim-

2 4 I tising the approximate MSE Co + Clh + C
2
h is given by h = (2ICI /4C

2
) .

The quantities C
1

and C
2

depend on the unknown underlying distrib-

ution function F , and in general will be complicated functions of the
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moments of F A possible strateeY would be to choose h with reference
to a standard distribution, such as the standard r-variate Gaussian. In
circumstances where the sample data do not suer-est any sensible statistical
model, C1 and C

2
can be estimated, for example by substitution of the

sample moments.

Given estimates C
1
,C
2

for C
1
,C
2

an entirely data-driven strategy

for choosing the degree of smoothing would be to take h = 0 if C
1

~ 0 •

h ~ if C
1

< 0 and Cz < 0 and h = (2Icll/4C2)~ otherwise. The case

h 00 corresponds to Efron's 'parametric bootstrap' (Efron, 1979).

Rather than choosing h by reference to (3.2), which gives an expan-
SiOD for h in the neighbourhood of zero, the representation (3.1) of the

estimator can be used in conjunction with computer algebraic manipulation to

obtain an exact expression for MSE{dh(F)}. This expression can then be

minimised in h to obtain the optimal value of the smoothing parameter.

4. EXTENSION TO NON-LINEAR FUNCTIONALS

When an explicit bootstrap procedure is being used the functional a
is unlikely to be linear. The ideas of Section 3 can be applied to bootstrap
estimation for more general a I provided a admits a first-order von Mises

expansion about F of the form

a(F) = a(F) + A(F - F) • (4.1)

for F 'near' F. The functional a is linear and hence representable as

an integral, A(F) = f a(t)dF(t) I and to first-order the sampling properties

of the bootstrap estimator

estimator A(F) of A(F)
-1

(4.1) will be Op(n ) .

a(F) of a(F) are the

Provided suplF-FI is

same as those of the

Op (n-1) , the error in

5. EXAMPLE

Let F be an unknown univariate distribution and consider estimation

of the skewness,

a(F)
EF(X - E

F
X)3

(E
F
(X_E

F
X)2j3/2

Simple manipulations, easily perfotmed by computer algebra, show that the

linear approximation (4.1) is defined by

4 2 3 3 2 2 2 2 2
aCt) (t(-2~1 t + 3~1 ~z t + 61.\ J.l3 - 6~ 1 ~z +.4~1 J..lzt 3111 J.l

3
t

2 3 2 2 6 4
- 3~lV2 t - 6V1V2~3 + 6~2 - ZJ..l

z
t + 3V2v3t»/2(V1 - 3v1 ~2

2 2
V2
3
)!(V

2
2

+ 3~1 ~2 ~1 )
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where
r

lJr = EFX .

The bootstrap estimator is given by:

3X

3/2 2 . (5.1)
V (1+h2)3/

In the special case of

of the function a(t)
B (F):
h

F standard Gaussian, computer algebraic manipulation

gives a closed form approximation for the MSE of

6
(5.2)

2 3
n(l+h )

and gives C
1
= -18/n

h = , .
In the general case, the formulae for C

1
and C

2
are complicated

functions of the moments of F. With a manipulation package such as REDUCE
it is straightforward to write FORTRAN subroutines to evaluate these coeff-
icients: the moments of the observed sample are then substituted to yield
estimates C

1
,C
2

The formula for MSE{dh(F)} , of which (5.2) is a special

case, amounts to hundreds of lines of code. If J.l
1
= 0 it reduces to the

36/n These values suggest, misleadingly,

simpler form:

MSE{Bh(F)}

+ 48(h
2
+1)'h

2
"22"3

2
_ 12(h

2
+1)'h

2
"2"3"5 - 8(h

2
+1)'n"22"3

2

2,222, 822
+ 48(h +1) ~2 ~3 - 12(h +1) ~2~3~5 + 4h n~2 ~3

622
+ 16h n~2 \1

3

4 2 2
+ 24h DlJ

2
~3

222
+ 36h2lJ 5 2 3 2 2 2

+ 20h DlJ
2
lJ
3 24h "2 "4 - 22h "2 "3

2

2 2 2 2 2 2 5 3
+ 4h lJ

2
~6 + 18h "3 "4 + 8n~2 J.l3

+ 36"2 24lJ
2

lJ
4

2 2 2 2 5 2 4
- 13"2 "3 + 4lJ

2
lJ
6 +9"3"4)/ (4n"2 (h +1) ) ) (5.3)

Invariance of the estimator (5.1) under the transformation Xi ~ Xi+C

(i = 1, ••.• n) suggests the followine procedure for choice of h Centre

the observations Xi by calculating Y
i

= Xi - X (i = l •...• n) Then

h tit -1 en y r 6) i (5 3) Th· .-su s ute n L
i
=l i for lJ

r
(r = 2..... n.. 15 ga ves an

estimate of the mean squared error of the bootstrap estimator as a function

of h Use a numerical routine to minim~se this and use the minimising

value of h for the bootstrap estimation itself.
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For each of four underlying distributions - standard Gaussian, uniform
on [-1,1], Beta (5,3) and standard exponential - and two sample sizes,

n = 5 and n = 50 , 1000 datasets were generated. Table 1 shows, for each

combination, the mean squared error over the lOaD replications of the boot-

strap estimators IX
h
(F) ,when h 1s chosen by various strategies. Strategy

A takes h = 0.0 always, Strategy B takes h = 0.5 always, Strategy C
estimates C

1
,C
2

and chooses h according to the estimated values, as

described in Section 3, while Strategy D is the procedure described above,
based on (5.3).

Table 1 : MSE of bootstrap estimators, skewness example.

Distribution N(O,I) U[-l,l) Beta(5,3) Exp(l)

a(F) 0.0 0.0 -0.310 2.0

n
Smoothing

Strategy

5 A
B
C

D

0.3607 0.3566 0.3889 2.4497
0.1847 0.1826 0.2341 2.7557
0.2977 0.2950 0.3629 2.5674
0.0912 0.0869 0.1554 3.0748

0.1092 0.0450 0.0650 0.4930
0.0559 0.0230 0.0435 0.8661
0.1066 0.0446 0.0649 0.5331
0.0596 0.0218 0.0589 0.5490

50 A
B
C

D

The results of the simulation disappoint in that they do not provide
concrete evidence in favour of any particular smoothing procedure. Automatic

application of a small amount of smoothing can lead to substantially less

accurate estimation: see the figure for the exponential simulation, n = 50

Strategy C is unlikely to make the estimation dramatically worse and gener-

ally leads to some improvement over the standard bootstrap. Strategy D can
lead to considerably greater accuracy in the bootstrap estimation but, as

the exponential simulation makes clear, may also lead to quite inappropriate

choice of h. Errors in the linear expansion (4.1), which is the basis of
strategies C and D, may, even for moderate sample size, be quite appreciable.

Automatic procedures for choosing the degree of smoothing should be used

with caution. It is probably advisable to examine the sample data, using an

estimator of the form (2.1) say, and then to choose h with reference to

some suggested parametric family of distributions.
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