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Better bootstrapping by constrained prepivoting

Summary - Bootstrap methods are attractive empirical procedures for assessment of
errors in problems of statistical estimation, and allow highly accurate inference in a
vast range of problems. Conventional bootstrapping involves sampling from the em-
pirical distribution function in nonparametric problems, or a fitted parametric model
in parametric inference. Recently, much attention has been focussed on methods for
reduction of the error properties of bootstrap procedures, by systematic modification
of the sampling model, in a way that is dependent on the parameter of interest. In
this paper, we provide a general perspective on the bootstrap, based on the notion
of prepivoting, with the specific aim of synthesizing recent developments related to
modified, or “weighted”, bootstrap procedures, and provide a critical evaluation of
the practical benefits of such procedures over conventional bootstrap schemes and
alternative analytic methods.

Key Words - Bootstrap; Conditional inference; Confidence set; Nonparametric boot-
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1. Introduction

Since its introduction by Efron (1979), the bootstrap has become a method
of choice for empirical assessment of errors and related quantities in a vast
range of problems of statistical estimation. Bootstrap methodology encompasses
a whole body of ideas, principal among them: (1) the substitution principle, of
replacement in frequentist inference of an unknown probability distribution F by
an estimate F̃ constructed from the sample data; and (2) replacement of analytic
calculation by simulation from F̃ . In conventional bootstrapping, F̃ has a simple
form. In nonparametric inference, F̃ is the empirical distribution function F̂ of
an observed random sample Y = {Y1, . . . , Yn}, while in a parametric context a
parametric model F(y; ψ) with a parameter ψ of fixed dimension is replaced
by its maximum likelihood estimate F(y; ψ̂). Much recent development in
bootstrap methodology relates to the issue of whether systematic reductions
in the error properties of bootstrap procedures may be obtained by simple
modification of the sampling distribution F̃ .
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In this paper, we provide a general perspective on the bootstrap paradigm,
appropriate to both the parametric and nonparametric contexts, and describe
how, in principle, the sought after systematic improvements may be obtained by
constrained, or weighted, bootstrapping. Section 2 describes a general frame-
work for an inference problem concerning an unknown scalar parameter of
interest, and presents illustration of how common parametric and nonparamet-
ric inference procedures may be described within that framework. In Section 3
we revisit a view of the bootstrap due to Beran (1987), (1988), known as
“prepivoting”, and detail the operation of conventional bootstrapping from that
perspective. Section 4 describes, from this prepivoting perspective, how better
bootstrap procedures might be obtained, for both nonparametric and parametric
problems, by constrained bootstrapping, and discusses various issues, practical
and theoretical, related to such weighted bootstrapping. Numerical illustrations
are presented in Section 5. Concluding remarks are made in Section 6, where
we attempt a critical evaluation of the benefits of weighted bootstrap schemes
over the conventional bootstrap, and provide thoughts for future developments.

2. An inference problem

Suppose that Y = {Y1, . . . , Yn} is a random sample from an unknown
underlying distribution F , and let γ ≡ γ (F) be a scalar parameter of interest.

Let u(Y, γ ) be a function of the data sample Y and the unknown param-
eter γ , such that a one-sided confidence set of nominal coverage 1 − α for
γ is I = {ψ : u(Y, ψ) ≤ 1 − α}. We speak of u(Y, γ ) as a “confidence set
root”. A notational point is of importance here. In our development, we will
denote by γ the true parameter value, with ψ denoting a generic point in the
parameter space, a “candidate value” for inclusion in the confidence set.

We now provide two examples, the first parametric and the second relating
to nonparametric inference about γ .

Example 1: Signed root likelihood ratio statistic. Suppose that it may be
assumed that Y has probability density fY (y; θ) belonging to a specified para-
metric family, depending on an unknown parameter vector θ = (γ, ξ), with
nuisance parameter ξ . Inference about γ may be based on the profile log-
likelihood lp(γ ) = l(γ, ξ̂γ ), and the associated likelihood ratio statistic wp(γ ) =
2{lp(γ̂ ) − lp(γ )}, with l(γ, ξ) = log fY (y; γ, ξ) the log-likelihood, θ̂ = (γ̂ , ξ̂ )

the overall maximum likelihood estimator of θ , and ξ̂γ the constrained maxi-
mum likelihood estimator of ξ , for fixed γ .

As the parameter of interest is scalar, inference is conveniently based on
the signed root likelihood ratio statistic, rp(γ ) = sgn(γ̂ −γ )wp(γ )1/2. We have
that rp is distributed as N (0, 1) to error of order O(n−1/2), and therefore a
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confidence set of nominal coverage 1 − α for γ is {ψ : u(Y, ψ) ≤ 1 − α}, with

u(Y, ψ) = �{rp(ψ)} .

Monotonicity in ψ of u(Y, ψ) implies that the confidence set is of the form
(γ̂l,∞), where the lower confidence limit γ̂l is obtained by solving �{rp(ψ)}=
1−α. The coverage error of the confidence set is of order O(n−1/2). The error may
be reduced to order O(n−3/2) by analytically adjusted versions of rp of the form

ra = rp + r−1
p log(up/rp) ,

that are distributed as N (0, 1) to error of order O(n−3/2): see, for example,
Barndorff-Nielsen (1986). Here the statistic up depends on specification of an
ancillary statistic, a function of the minimal sufficient statistic that is approxi-
mately distribution constant.

Example 2: Studentized parameter estimate. Let γ̂ be an asymptotically nor-
mal nonparametric estimator of γ , with estimated variance σ̂ 2. A nonparametric
confidence set of nominal coverage 1 − α may be defined as above by

u(Y, ψ) = �{(γ̂ − ψ)/σ̂ } .

Again, the confidence set is of one-sided form (γ̂l, ∞), with u(Y, γ̂l) = 1 − α.
Typically, coverage error is again O(n−1/2).

3. The prepivoting view of the bootstrap

From the prepivoting perspective (Beran, 1987, 1988), the bootstrap may
be viewed as a device by which we attempt to transform the confidence set
root U = u(Y, γ ) into an approximate pivot, that is, an approximately Un(0, 1)

random variable.
The underlying notion is that if U were exactly distributed as Un(0, 1),

the confidence set would have coverage exactly equal to 1 − α: Pr(γ ∈ I) =
Pr{u(Y, γ ) ≤ 1 − α} = Pr{Un(0, 1) ≤ 1 − α} = 1 − α. But U is typi-
cally not Un(0, 1), so the coverage error of I is non-zero. By bootstrapping,
we hope to produce a new confidence set root u1 so that the confidence set
{ψ : u1(Y, ψ) ≤ 1 − α} has lower coverage error for γ . The error proper-
ties of different bootstrap schemes can be assessed by measuring how close to
uniformity is the distribution of U1 = u1(Y, γ ).

In the conventional bootstrap approach, the distribution function G(x; ψ)

of u(Y, ψ) is estimated by

Ĝ(x) = Pr∗{u(Y ∗, γ̂ ) ≤ x} ,

and we define the conventional prepivoted root by

û1(Y, ψ) = Ĝ{u(Y, ψ)} ,

for each candidate parameter value ψ .
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In a parametric problem, Pr∗ denotes the probability under the drawing
of bootstrap samples Y ∗ from the fitted maximum likelihood model fY (y; θ̂ ).
In the nonparametric setting, Pr∗ denotes the probability under the drawing of
bootstrap samples Y ∗ from the empirical distribution function F̂ : such a sample
is obtained by independently sampling, with replacement, from {Y1, . . . , Yn}.
In practice, in both contexts, the prepivoting must in general be carried out
by performing a Monte Carlo simulation, involving the drawing of a series
of R bootstrap samples, rather than analytically. In this regard, we note that
the effect of Monte Carlo approximation on the coverage properties of the
confidence set can be subtle (Lee and Young, 1999a), though a rule-of-thumb
would suggest taking R to be of the order of a few thousands.

The basic idea here is that if the bootstrap estimated the sampling distri-
bution exactly, so that Ĝ was the true (continuous) distribution function G of
u(Y, γ ), then û1(Y, γ ) would be exactly Un(0, 1) in distribution, as a conse-
quence of the probability integral transform: if Z is a random variable with
continuous distribution function H(·), then H(Z) is distributed as Un(0, 1).
Therefore the confidence set {ψ : û1(Y, ψ) ≤ 1 − α} would have exactly the
desired coverage. Use of Ĝ in place of G incurs an error, though in general
the error associated with û1(Y, ψ) is smaller in magnitude than that obtained
from u(Y, ψ).

In Example 1, conventional bootstrapping amounts to replacing the asymp-
totic N (0, 1) distribution of rp by its distribution when the true parameter
value is θ̂ = (γ̂ , ξ̂ ). The bootstrap confidence set is of the form (γ̂ ∗

l , ∞),
where rp(γ̂

∗
l ) = ĉ1−α, with ĉ1−α denoting the 1 − α quantile of rp(γ̂ ) under

sampling from the specified model with parameter value (γ̂ , ξ̂ ). In general,
this reduces the order of the coverage error of the confidence set to O(n−1).
That the conventional bootstrap approximates the true distribution of rp to er-
ror of order O(n−1) was established by DiCiccio and Romano (1995). The
effectiveness of bootstrapping in approximation of the sampling distribution of
the likelihood ratio statistic wp was shown by Martin (1990), while Bickel and
Ghosh (1990) demonstrated that bootstrap approximation automatically yields
Bartlett correction of wp.

In Example 2, prepivoting by the same means amounts to replacing the
asymptotic N (0, 1) distribution of (γ̂ −γ )/σ̂ by the distribution of (γ̂ ∗−γ̂ )/σ̂ ∗,
with γ̂ ∗ and σ̂ ∗ denoting the estimator and its standard error estimator respec-
tively for a bootstrap sample obtained by uniform resampling from {Y1, . . . , Yn}.
The confidence set is again of the form (γ̂ ∗

l , ∞), where û1(Y, γ̂ ∗
l ) = 1 − α.

In general, the bootstrapping again reduces the order of the coverage error to
O(n−1).
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4. Better bootstraps

The basic device by which we may, in principle, obtain better bootstrap
inference is to change the distribution from which bootstrap samples are drawn.
Specifically, instead of using a single distribution, we constrain or weight the
distribution from which bootstrap samples are drawn, prescribing it to depend
on the candidate value ψ of the parameter of interest.

Weighted bootstrap procedures of this kind encompass a variety of statistical
methods and are closely related in the nonparametric setting to empirical and
other forms of nonparametric likelihood (Owen, 1988, DiCiccio and Romano,
1990). Besides the inference problem of confidence set construction (and the
associated hypothesis testing problem) considered here, applications of weighted
bootstrap ideas are numerous, and include variance stabilization, nonparametric
curve estimation, nonparametric sensitivity analysis etc.: see Hall and Presnell
(1999a,b,c,).

In detail, in our prepivoting formulation of bootstrapping, we replace
û1(Y, ψ) by the weighted prepivoted root

ũ1(Y, ψ) = G̃{u(Y, ψ); ψ} ,

with
G̃(x; ψ) = Pr†{u(Y †, ψ) ≤ x} .

Now, in the parametric setting, Pr† denotes the probability under the drawing
of bootstrap samples Y † from the constrained fitted model fY (y; ψ, ξ̂ψ). In
a nonparametric problem, Pr† denotes the probability under the drawing of
bootstrap samples Y † from the distribution F̂p which places probability mass pi

on Yi , where p ≡ p(ψ) = (p1, . . . , pn) is chosen to minimize (say) the
Kullback-Liebler distance

−n−1
n∑

i=1

log(npi)

between F̂p and F̂ , subject to γ (F̂p) = ψ .
A number of remarks are in order.

Remark 1. We note that, by contrast with the conventional bootstrap approach,
in principle at least, a different fitted distribution is required for each candidate
parameter value ψ . In the context of Example 1, for instance, the confidence
set is {ψ : rp(ψ) ≤ c1−α(ψ, ξ̂ψ)}, where now c1−α(ψ, ξ̂ψ) denotes the 1 − α

quantile of the sampling distribution of rp(ψ) when the true parameter value is
(ψ, ξ̂ψ), so that a different bootstrap quantile is applied for each candidate ψ .

Remark 2. However, computational shortcuts which reduce the demands of
weighted bootstrapping are possible. These include the use of stochastic search
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procedures, which allow construction of the confidence set without a costly sim-
ulation at each candidate parameter value, such as the Robbins-Munro procedure
(Garthwaite and Buckland, 1992; Carpenter, 1999), and, in the nonparametric
case, approximation to the probability weights p(ψ) (Davison and Hinkley,
1997, Section 9.4.1), rather than explicit evaluation for each ψ .

Remark 3. The theoretical effects of weighted bootstrapping in the nonpara-
metric context are analyzed for various classes of problem, including those
involving robust estimators and regression estimation, as well as the smooth
function model of Hall (1992), by Lee and Young (2003). The basic conclusion
is striking: if u(Y, γ ) is uniform to order O(n− j/2),

Pr{u(Y, γ ) ≤ u} = u + O(n− j/2) ,

then, quite generally, û1(Y, γ ) is uniform to order O(n−( j+1)/2), while ũ1(Y, γ )

is uniform to the higher order O(n−( j+2)/2). The result holds for confidence set
roots of the kind described in Example 2, as well as more complicated roots:
an example is the widely used bootstrap percentile method confidence set root
u(Y, γ ) = Pr∗(γ̂ ∗ > γ ).

The basic assumption made by Lee and Young (2003) is that the root
u(Y, γ ) admits an asymptotic expansion of the form

u(Y, γ ) = �(T ) + φ(T ){n−1/2r1(Z , T ) + n−1r2(Z , T ) + . . . } , (1)

where T = (γ̂ − γ )/σ̂ is the studentized parameter estimate, asymptotically
standard normal, as in Example 2 above, and where the precise specification
of Z = n−1 ∑n

i=1 zi(Y, F) and polynomials r1, r2 depends on the class of prob-
lem being considered. The basic result then holds under mild conditions on
the choice of probability weights pi . In particular, the conclusions hold for a
whole class of distance measures which generalize the Kullback-Leibler dis-
tance (Baggerly, 1998; Corcoran, 1998). The choice of distance measure is
therefore largely irrelevant to the theoretical conclusion, allowing the use of
well-developed algorithms (Owen, 2001) for construction of weighted bootstrap
distributions F̂p, as well as use of simple tilted forms of the empirical distribu-
tion function F̂ , as described, for example, by DiCiccio and Romano (1990).

Lee and Young (2003) also consider the effects of successively iterating
the prepivoting. They demonstrate that iterated weighted prepivoting accelerates
the rate of convergence to zero of the bootstrap error, compared to the effect of
iteration of the conventional bootstrap (Hall and Martin, 1988; Martin, 1990).

The same conclusions hold for testing. When testing a point null hypothesis
H0 : γ = γ0, a one-sided test of nominal size α rejects H0 if u(Y, γ0) ≤ α. If
u(Y, γ0) were exactly Un(0, 1), the null rejection probability would be exactly α.
To increase accuracy, weighted bootstrapping applied with γ = γ0 reduces
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error by O(n−1). Now, of course, weighted bootstrapping need only be carried
out at the single value γ0, so computational complications over conventional
bootstrapping are reduced.

As an extension to previous work, we note here that the machinery de-
veloped by Lee and Young (2003) applies immediately to the signed root of
empirical and other nonparametric likelihoods in the context of M−estimation.
Considering the empirical likelihood case, DiCiccio and Monti (2001) provide
an expansion, their formula (13), for the signed root R(γ ) of the empirical
likelihood ratio statistic. It follows from this expansion that �{R(γ )} has an
expansion of the form (1) above. Therefore, under the mild assumptions on the
probability weights required by Lee and Young (2003), weighted prepivoting
of �{R(γ )} reduces the coverage error of confidence sets for γ from O(n−1/2)

to O(n−3/2), compared to the order O(n−1) obtained from the conventional
bootstrap approach advocated by Lee and Young (1999b). The same result
holds for other forms of nonparametric likelihood, provided an expansion of
the kind given by (13) of DiCiccio and Monti (2001) exists.

Remark 4. DiCiccio et al. (2001) show that in the parametric context, and for
the specific case u(Y, ψ) = �{rp(ψ)}, the coverage error of the confidence set
is reduced by weighted prepivoting to O(n−3/2). This same order of error as
that obtained from the analytic adjustment ra to the signed root statistic rp is
achieved without any need for analytic calculation, or specification of the ancil-
lary required by ra . DiCiccio et al. (2001) argue that in this context weighted
prepivoting is less effective when applied with other confidence set roots, such
as those based on the Wald or score statistics. An empirical investigation of
this claim for a particular inference problem is provided in Section 5 below.

Remark 5. We have assumed here that in the parametric context inference
is required for the parameter of interest γ in the presence of the nuisance
parameter ξ . We note that in the absence of any nuisance parameter, confidence
sets based on the weighted prepivoted root ũ1(Y, ψ) will always have exactly
the desired coverage 1 − α. The conventional bootstrap approach, based on
û1(Y, ψ), will only yield exact inference if the initial root u(Y, ψ) is exactly
pivotal. There seem, therefore, strong arguments in favour of general adoption
of weighted bootstrap schemes.

5. Numerical illustrations

Illustration 1: Exponential regression. Consider an exponential regression
model in which T1, . . . , Tn are independent, exponentially distributed lifetimes,
with means of the form E(Ti) = exp(β+ξ zi), with known covariates z1, . . . , zn .
Suppose that inference is required for the mean lifetime for covariate value z0.
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Let the parameter of interest therefore be γ = β +ξ z0, with nuisance parameter
ξ . The signed root likelihood ratio statistic is

rp(γ )=sgn(γ̂−γ )

[
2n

{
(γ −γ̂ )+(ξ̂γ − ξ̂ )c̄ + n−1 exp(−γ )

n∑
i=1

Ti exp(−ξ̂γ ci) −1

}]1/2

,

where ci = zi − z0, i = 1, . . . , n and c̄ = n−1 ∑
ci .

In this case, the calculations leading to the adjusted version ra of rp are
readily performed. However, it is easily verified that rp is exactly pivotal.
To see this, substitute Ti = exp(γ + ξci)Yi , where the Yi are independently,
exponentially distributed with mean 1, and observe that the signed root statistic
may be expressed as a (complicated) function of Y1, . . . , Yn , and so has a
distribution which does not depend on (γ, ξ). Therefore, even conventional
bootstrapping yields the true sampling distribution, modulo simulation error.
There is no need for weighted bootstrapping in this problem.

For numerical illustration, we consider data extracted from Example 6.3.2
of Lawless (1982), as analyzed by DiCiccio et al. (2001). The n = 5 responses
Ti are 156, 108, 143, 56 and 1, survival times in weeks of patients suffering
from leukaemia, and the corresponding covariate values are 2.88, 4.02, 3.85,
3.97 and 5.0, the base-10 logarithms of initial white blood cell count. We take
z0 = log10(50, 000). For these data, γ̂ = 2.399 and ξ̂ = −2.364.

We compare the coverage properties of confidence sets derived from �(rp),
�(ra) and bootstrapping for n = 5, in an exponential regression model with
these parameter values and the fixed covariate values. Table 1 compares actual
and nominal coverages provided by the three constructions, based on 20,000
simulated datasets. Coverages based on normal approximation to rp are quite
inaccurate, but normal approximation to ra provides much more accurate infer-
ence, while bootstrap confidence sets (each based on R=1999 bootstrap samples)
display coverages very close to nominal levels.

Table 1. Coverages (%) of confidence sets for mean γ = exp(β + ξ z0) at z0 = log10(50, 000) in
exponential regression example, estimated from 20,000 data sets of size n = 5 and using
R = 1, 999 bootstrap replicates.

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.0 99.0

�(rp) 1.5 3.6 6.7 12.8 93.3 96.8 98.6 99.4
�(ra) 1.0 2.6 5.4 10.4 89.8 94.9 97.4 99.0
Bootstrap 1.0 2.5 5.1 10.0 89.9 94.8 97.4 98.9

Other cases where it is easily verified that rp is exactly pivotal, and there-
fore conventional bootstrapping of rp will provide exact inference, include in-
ference for the error variance in a normal-theory linear regression model, and
the related Neyman-Scott problem, as described by Barndorff-Nielsen and Cox
(1994, Example 4.2).
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Illustration 2: Normal distributions with common mean. We consider now the
problem of parametric inference for the mean, based on a series of independent
normal samples with the same mean but different variances. Initially we consider
a version of the Behrens-Fisher problem in which we observe Yi j , i =1, 2, j =
1, . . ., ni , independent N (γ,σ 2

i ). The common mean γ is the parameter of
interest, with orthogonal nuisance parameter ξ =(σ1, σ2). Formally, this model
is a (4,3) exponential family model. In such a model, the adjusted signed root
statistic ra is intractable, though readily computed approximations are available:
see Skovgaard (1996); Severini (2000, Chapter 7).

We compare coverages of confidence sets derived from�(rp),�(r̃a), the con-
ventional bootstrap, which bootstraps at the overall maximum likelihood esti-
mator (γ̂ , ξ̂ ), and the weighted bootstrap, which uses bootstrapping at the con-
strained maximum likelihood estimator (γ, ξ̂γ ), for 50,000 datasets from this
model, with parameter values γ =0, σ 2

1 =1, σ 2
2 =20 and sample sizes n1 =n2 =5.

All bootstrap confidence sets are again based on R=1, 999 bootstrap samples.
Also considered are the corresponding coverages obtained from �(W ) and �(S)

and their conventional and weighted bootstrap versions, where W and S are Wald
and score statistics respectively, defined as the signed square roots of the statis-
tics (3.33) and (3.35) of Barndorff-Nielsen and Cox (1994, Chapter 3). In the
study, r̃a is an approximation to ra based on orthogonal parameters (Severini,
2000, Chapter 7).

The coverage figures shown in Table 2 confirm that the simple bootstrap
approach improves over asymptotic inference based on any of the statistics
rp, S, or W . Conventional bootstrapping yields very accurate inference for
all three statistics: gains from using by the constrained bootstrap are slight.
Overall, bootstrapping is very competitive in terms of accuracy when compared
to r̃a .

Table 2. Coverages (%) of confidence intervals for Behrens-Fisher example, estimated from 50,000
data sets with bootstrap size R = 1, 999.

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

�(rp) 1.6 3.7 6.5 11.9 88.0 93.5 96.4 98.4
MLE bootstrap 0.9 2.3 4.8 10.1 90.1 95.3 97.8 99.2
Constrained MLE bootstrap 0.8 2.3 4.8 10.0 90.1 95.3 97.9 99.2

�(r̃a) 0.9 2.5 5.2 10.6 89.5 94.9 97.6 99.1

�(W ) 5.2 8.0 11.3 16.5 83.5 88.9 92.2 94.8
MLE bootstrap 0.8 2.3 4.7 10.1 90.1 95.2 97.8 99.2
Constrained MLE bootstrap 0.8 2.2 4.6 10.0 90.2 95.4 97.9 99.3

�(S) 0.1 1.4 4.7 11.6 88.6 95.5 98.7 99.9
MLE bootstrap 1.1 2.4 5.0 10.0 90.1 95.2 97.7 99.0
Constrained MLE bootstrap 0.9 2.4 5.0 10.1 90.0 95.2 97.7 99.1
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In the above case, the nuisance parameter is two-dimensional. As a more
challenging case, we consider extending the above analysis to inference on
the common mean, set equal to 0, of six normal distributions, with unequal
variances (σ 2

1 , . . . , σ 2
6 ), set equal to (1.32, 1.93, 2.22, 2.19, 1.95, 0.11), these

figures being the variances for the data of Example 7.15 of Severini(2000,
Chapter 7), which represent measurements of strengths of six samples of cot-
ton yarn. The inference is based on an independent sample of size 5 from
each population. Table 3 provides figures corresponding to those in Table 2
for this regime. Now the bootstrap approach is clearly more accurate than
the approach based on r̃a , and it is possible to discern advantages to the
weighted bootstrap approach compared to the conventional bootstrap. Again,
the weighted bootstrap works well when applied to the Wald and score statis-
tics, casting some doubt on the practical significance of the arguments of
DiCiccio et al. (2001).

In summary, it is our general experience that analytic approaches based
on ra are typically highly accurate when the dimensionality of the nuisance
parameter is small and ra itself is readily constructed, as in, say, a full expo-
nential family model, where no ancillary statistic is required. In such circum-
stances, the argument for using the weighted bootstrap then rests primarily on
its maintaining accuracy while avoiding cumbersome analytic derivations. In
more complicated settings, in particular when the nuisance parameter is high
dimensional or analytic adjustments ra must be approximated, the weighted
bootstrap approach is typically preferable both in terms of ease of implemen-
tation and accuracy. Gains over conventional bootstrapping may, however, be
slight.

Table 3. Coverages (%) of confidence intervals for normal mean example, estimated from 50,000
data sets with bootstrap size R = 1, 999.

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

�(rp) 3.0 5.7 9.3 15.1 85.3 91.2 94.6 97.2
MLE bootstrap 1.1 2.7 5.2 10.2 90.3 95.0 97.5 98.9
Constrained MLE bootstrap 0.9 2.5 5.1 10.1 90.4 95.2 97.6 99.0

�(r̃a) 1.5 3.4 6.4 11.9 88.7 93.9 96.7 98.5

�(W ) 6.7 9.6 13.3 18.7 82.0 87.3 90.8 93.6
MLE bootstrap 1.1 2.7 5.3 10.2 90.2 95.0 97.4 98.9
Constrained MLE bootstrap 0.9 2.4 5.0 9.9 90.5 95.3 97.6 99.1

�(S) 0.6 2.1 5.1 10.9 89.6 95.2 98.0 99.5
MLE bootstrap 1.2 2.7 5.2 10.1 90.4 95.1 97.4 98.8
Constrained MLE bootstrap 1.1 2.5 5.2 10.2 90.3 95.1 97.5 99.0
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Illustration 3: Nonparametric inference for variance. As a final illustration,
we consider nonparametric inference for the variance γ = 0.363 of a folded
standard normal distribution |N (0, 1)|, for sample size n = 50.

From 20,000 datasets, we compared the coverage properties of confidence
sets based on u(Y, ψ) = �{(γ̂ −ψ)/σ̂ }, with γ̂ the sample variance and σ̂ 2 an
estimate of its asymptotic variance, and its conventional and weighted prepiv-
oted forms û1(Y, ψ) and ũ1(Y, ψ). Table 4 displays the coverages of the three
intervals. Weighted bootstrapping here utilised the exponentially tilted distri-
bution involving empirical influence values described by Davison and Hinkley
(1997, Section 9.4.1): see also DiCiccio and Romano (1990). Results for this,
computationally simple, weighting procedure are very similar to those obtained
from other, computationally less attractive, choices of construction of weighted
bootstrap distribution.

Confidence sets based on u(Y, ψ) are quite inaccurate, and substantial im-
provements are given by both conventional and weighted bootstrapping. Which
of these is best depends, however, on the required coverage level. Simi-
lar conclusions are seen in other nonparametric examples: see Example 3
of Davison, Hinkley and Young (2003) and the examples given by Lee and
Young (2003).

Graphical illustration of the prepivoting operation of the bootstrap is pro-
vided in Figure 1, which shows the distribution functions, as estimated from
the 20,000 datasets, of u(Y, γ ), û1(Y, γ ) and ũ1(Y, γ ), with γ the true pa-
rameter value. The distribution of u(Y, γ ) is distinctly not Un(0, 1), while
both bootstrap schemes yield prepivoted roots which are close to uniform, ex-
cept in the lower tail. There, the distribution function of the conventional
prepivoted root is closer to uniform than that of the weighted prepivoted
root. The coverage figures shown in Table 4, of course, may be read di-
rectly off the graph of the distribution functions of the three confidence set
roots.

Table 4. Coverages (%) of bootstrap confidence sets for the variance γ when F is the folded
standard normal distribution, estimated from 20,000 data sets of size n = 50 and using
R = 4, 999 bootstrap replicates; the root taken is U (Y, γ ) = �{(γ̂ − γ )/σ̂ } with γ̂
sample variance.

Nominal 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0

U (Y, γ ) 10.0 13.4 17.2 23.0 95.1 98.3 99.4 99.9
Û1(Y, γ ) 3.1 5.4 8.5 14.1 91.6 96.5 98.6 99.6
Ũ1(Y, γ ) 6.0 8.7 12.1 17.2 90.7 95.9 98.1 99.4
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Figure 1.

6. Concluding remarks

In parametric inference, there are very persuasive arguments in favour of
likelihood-based approaches to inference. In this context, all evidence points to
weighted bootstrapping being an attractive alternative to analytic approaches,
and yielding worthwhile improvements over conventional bootstrapping. In
particular, the parametric illustrations presented here, and those considered by
DiCiccio et al. (2001), demonstrate that excellent levels of accuracy may be ob-
tained by the weighted bootstrap approach, which is easily implemented, without
risk of impaired performance relative to conventional bootstrap methodology.

There is, of course, another consideration which should be taken into ac-
count in our analysis. Analytic approaches, such as those based on ra , are de-
signed to have conditional validity, given an ancillary statistic, as well as yield
improved distributional approximation. There is some evidence that bootstrap
approaches are less accurate from a conditional perspective. For the exponential
regression example, exact conditional inference is described in Section 6.3.2 of
Lawless (1982). Based on the same 5 observations as considered previously,
Figure 2 provides graphical comparison between exact conditional significance
levels, given ancillary statistics log Ti − γ̂ − ξ̂ci , i = 1, . . . , n, for testing the
null hypothesis γ = γ̂ − δ, with approximate levels obtained from �(ra) and
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by bootstrapping the distribution of rp. Also shown are results obtained by
bootstrapping the distribution of ra . The figure plots the relative error of each
approximation, defined as the approximation minus the true conditional sig-
nificance level, expressed as a proportion of the true level, for a range of
values of δ. Each bootstrap figure is based on R = 10, 000, 000 bootstrap
samples. The conditional accuracy of the approximation obtained by uncon-
ditional bootstrapping of the distribution of rp is less than that obtained from
normal approximation to the distribution of the analytic adjustment ra . How-
ever, bootstrapping the distribution of ra gives excellent conditional accuracy,
to very small significance levels. For reference, the vertical line shown in the
figure corresponds to an exact conditional significance level of 1%. We con-
clude from this example and evidence presented by DiCiccio et al. (2001) that
bootstrapping rp provides satisfactorily stable inference, while bootstrapping ra

provides further conditional accuracy. In general, a statistical procedure is stable
if it respects the principle of conditioning relative to any reasonable ancillary
statistic, without requiring specification of the ancillary: see Barndorff-Nielsen
and Cox (1994, Chapter 8). However, a full analysis of the stability properties
of bootstrap inference is yet to be undertaken. One approach to conditional
parametric bootstrapping in certain situations is through Metropolis-Hastings
algorithms (Brazzale, 2000).
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In the nonparametric context, the situation is less clear-cut. In particular,
it is unclear whether the theoretical benefits of weighted bootstrapping over
conventional bootstrapping are realisable in any particular situation, or whether
weighted bootstrapping might actually reduce finite sample accuracy. Part of the
problem here, of course, lies in the absence for many nonparametric problems
of a ‘gold standard’, of the kind provided for the parametric setting by the
adjusted signed root statistic ra .

Our deliberations here therefore expose a number of issues for future de-
velopment.

• There is a strong need to identify a gold standard for nonparametric in-
ference. We might speculate, from evidence presented by Lee and Young
(1999b), that this is provided by some form of (weighted) bootstrap cali-
bration of nonparametric likelihood.

• We have attempted in this article to draw together various strands of
contemporary bootstrap methodology. A systematic theory of weighted
bootstrapping, encompassing both parametric and nonparametric and also
likelihood and non-likelihood approaches to inference is suggested by our
analysis and seems worth developing. That theory should encompass also
two-sided inference for the parameter of interest.

• Our focus has been on the stylized problem of inference for a scalar
parameter based on a random sample. Extensions to complex settings,
in particular where the data do not constitute a random sample, seems
desirable.
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