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Bootstrap bias
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SUMMARY

Use of the bootstrap in estimation of the sampling distribution of a pivot is considered
for two simple situations. It is shown by a simulation study that in each case the bootstrap
is noticeably biased for small sample sizes. The techniques of computer algebra are used
to obtain an exact assessment of the bias in both problems and an approximate theoretical
analysis based on saddlepoint approximation is presented.
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1. INTRODUCTION

The bootstrap resampling method of statistical estimation (Efron, 1979) operates as fol-
lows. It is required to estimate the distribution of the random variable T(X},..., Xm ; F),
possibly depending on the distribution F, for Xx,..., Xm as a random sample from F.
The distribution F itself is unknown, but a random sample x , , . . . , xn, with empirical
distribution function Fn, is available from F. The bootstrap method approximates the
sampling distribution of T(X, , . . . , Xm ; F) under F by that of T( Y, , . . . , Ym ; Fn) under
Fn, where Yx,..., Ym denotes a random sample of size m from Fn.

The bootstrap procedure therefore involves resampling from a distribution Fn which
is of finite support, whereas F may not be. It might be expected that in certain circum-
stances, such as the estimation of small tail probabilities, this would lead to noticeable bias.

In this paper we study bias in bootstrap estimation of tail probabilities of the form
P(a) = pr {T(X},..., Xm; F)> a\F} for two situations. In the case of an underlying
normal distribution, estimation for the pivot T(Xx,..., Xm ; F) = Xm - (JL is investigated,
and in the case of an underlying exponential distribution for the ratio pivot
T(X,,. ..,Xm;F) = XJp, where Xm = m"1 2 AT, and /x = EF(X). In each case P{a) is
estimated by

P(a) = PT {TiY,,..., Ym; Fn)> a\Fn}.

Further, in each case T is exactly pivotal under sampling from the underlying family of
distributions, so an immediate assessment of the extent of the bias that derives from the
finite support of Fn may be obtained by studying estimation for the specific cases of the
standard normal distribution and the standard exponential distribution.

2. SIMULATION APPROACH

Suppose the observed dataset consists of n observations x , , . . . , xn, with mean xn =
n"'2X|. Let Yu...,Ym denote a bootstrap sample of m observations drawn inde-
pendently from the empirical distribution Fn, and let Ym = m"12 YJ.
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In the normal case, the tail probability P(a) = pr (Xm -fi> a\F) is estimated by
P(a) = pr (Ym - xn > a | Fn). In principle, P(a) should be constructed by considering all
nm possible bootstrap samples. In practice, P(a) is itself estimated by drawing a large
number of bootstrap samples from Fn. Throughout the simulation, bootstrap estimators
were constructed by drawing 50 000 bootstrap samples from each Fn. This sampling
procedure was then repeated over different Fn to estimate E{P(a)}. In all, 1000 replica-
tions were performed for each of the combinations of sample size considered. All
simulations were performed using NAG generation routines, on a Hewlett-Packard
9000/330 workstation. It took some days to obtain a complete set of results, though use
of efficient bootstrap methods, such as importance sampling, might reduce this time
considerably.

Table 1 gives sample results of the normal simulation, for two combinations of data
and bootstrap sample sizes: (m, n) = (5,10) and (20, 20). The comparison of immediate
interest is that between the true probability P(a) andjhe simulation estimate of E{P(a)}.
An estimated standard error of the estimate of E{P(a)} is also given in the table. The
results are striking and indicate that, in each case, for small values of a, P(a) is biased
downwards as an estimator of P(a). For larger values of a it is seen that P(a) is biased
upwards. The bias of the bootstrap estimator is least when P(a) is about 0-01 in each
case. These results are, perhaps, rather counter-intuitive, as we might expect the bootstrap
on average to underestimate the mass in the extreme tails of the distribution. Breakdown
of the results shows, however, that in the tail most bootstrap estimators P(a) do indeed
underestimate P(a): the simulation shows that the upward bias results from occasional
extreme overestimation of P(a).

Table 2 gives sample results of the exponential simulation, for the same two combina-
tions of sample sizes. Results here have been split into results for bootstrap estimation
of left tail probability PL( a) = pr (Xm//t <a\F), where the bootstrap estimator is PL(a) =
pr (Ym/xn < a | Fn), and results for estimation of right tail probability PR(a) = 1 — PL(a),

Table 1. Simulated and theoretical expectations, normal distribution

m, n

5,10

20,20

a

01
0-3
0-5
0-7
0-9
1-1
1-3
1-5
1-7

01
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9

SP, saddlepoint

P(a)

0-41153

0-25117

0-13178

0-05876

002209

000695

000183

000040

000007

0-32736

018555

008986
003682

001267

000365

000087

000017

0-00003

E{P(a)}
(sim.)

0-40066
0-22807
011246
0-04928
001973
0-00735
000266
0-00094
0-00033

0-31809
0-17403
0-08226
003406
0-01254
0-00417
000129
000037
000010

Est. st.
error

0-00103
000186
0-00174
0-00120
0-00070
000036
0-00018
000009
0-00004

0-00094
0-00124
0-00103
0-00065
000034
000016
0-00007
000002
000001

E{P(a)}
(exact)

0-40138

0-22901

0-11220

004851

001909

0-00702

0-00247

0-00085

0-00029

0-31753

0-17331

008174

003381

001249

0-00420

000131

0-00038

000011

E{P(a)}
(SP)

0-40103

0-22789

011098

0-04797

001934

0-00755

000290

000110

000041

0-31780

0-17352

008171

0-03357

001210

0-00297

000059

000016

0-00005
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Table 2. Simulated and theoretical expectations, exponential distribution

(a) Left tail probability

181

m, n

5,10

!0,20

m, n

5,10

:o, 20

a

01
0-3
0-5
0-7
0-9

0-3
0-5
0-7
0-9

a

10
1-3
1-6
1-9
2-2
2-5
2-8

10
1-3
1-6
1-9
2-2

PL(a)

0-00017
0-01858
0-10882
0-27456
0-46790

000001
0-00345
007650
0-34908

(b)

PR(O)

0-44049
0-22367
0-09963
0-04026
001510
0-00535
000181

0-47026
0-09682
000934
0-00051
0-00002

E{PL(a)}
(sim.)

000092
002111
009349
0-23406
0-42528

000006
000529
0-07079
0-32827

Right tail probability

E{PR{a)}
(sim)

0-47171
0-20832
006976
0-02281
0-00762
0-00243
0-00084

0-48005
0-08278
0-00775
0-00070
0-00007

Est. st.
error

0-00011
000090
0-00203
0-00258
0-00160

000001
0-00025
000124
0-00125

Est. st.
error

0-00063
000171
0-00134
0-00077
0-00044
0-00021
000011

0-00030
000116
0-00033
000006
000001

E{PL{a)
(exact)

0-00085
0-02136
009599
0-23836
0-42905

0-00005
0-00489
0-06894
0-32620

E{PR{a)
(exact)

0-47021
0-21091
0-07167
0-02418
0-00828
0-00276
0-00096

0-48016
008102
0-00740
0-00067
000007

where the bootstrap estimator is PR{a) = 1 - PL{a). Comparison of the true population
probabilities with the simulation estimates of the expected bootstrap estimate again
indicates distinct and systematic bias.

3. ANALYTIC APPROACH

An analytic examination of E{P(a)} can be performed as follows. Suppose that the
moment generating function M(T) of the underlying distribution exists for real T in an
open interval containing the origin, so that all moments exist.

The moment generating function of the empirical distribution is

(3-D

and the conditional moment generating function for mZ = m( Ym -xn) is

{ 1
(xl + . . . + Xn)T\Mm(T\x1,...,Xn).

« J

Davison & Hinkley (1988) use this moment generating function (3-1) to obtain a saddle-
point approximation to P(a) for a given dataset. But as we are interested in the bias of
P(a), we have first to average the moment generating function over all possible datasets
before approximating. The simplest way of evaluating this expectation is to observe that
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Afm(T|x, , . . . ,x n) is the coefficient of Am/m! in

n n 2! ' " nmm\

so that the unconditional moment generating function E(emT2) is the coefficient of \m/m!
in

= R"(Kr) (3-2)

where

Then

C being a contour in the A plane enclosing the origin.
The true tail probability is

c+/ao j

- ,

T
= —

2m Jc_ia

where c>0. Correspondingly, E{P(a)} is given by the formula

1 fc+'°° 9 dr
^{^(0)} = ^— ^ ( e ^ ) « - " " ' — (3-4)

2 771 Jc_iao T

Explicit determination, by differentiation, of the coefficient of Am/m! in (3-2) shows that
in the case m = 5, n = 10, for instance,

+ ^ exp (9T 2 /4 ) + ^ exp (5r2/4). (3-5)

From (3-5) it is easily seen that the inversion (3-4) yields

| ^ {l-«D(5a/V6-5)}

)}. (3-6)
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The manipulations required to derive (3-5) and evaluate (3-6) are most easily performed
using a computer-algebraic manipulation package. The REDUCE package enabled evalu-
ation of the corresponding expressions for the larger sample sizes considered, where
there are many more terms involved, and hence calculation of the exact values of E{P(a)}
shown in Table 1.

To obtain an easily computed numerical approximation to E{P(a)}, observe that by
(3-3) and (3-4)

^\^^de-, (3-7)
(2-n-i) J J r

where

\ = ee, Q(6,T) = R(ee,T), il(0, T) = log <?(<?, T) -m0/n-mar /n ,

and the contours in the 0 and T planes are vertical lines passing to the right of the origin.
The method used by Skovgaard (1987) to extend the approximation due to Lugannani

& Rice (1980) is directly applicable to (3-7), and yields an approximation to E{P(a)}
under appropriate conditions, satisfied in the case when F is N(0,1) and M(T) =
exp^r2). Write tl, il' for dfl/dd and dfl/dr, and so on. The saddlepoint (6, f) of the
exponent in (3-7) satisfies 11(0, r) = 0, H'(0, ?) = 0, and is easily found using packaged
iterative root finding routines, such as those in the NAG subroutine library. Suppose also
that Ji(£0,0) = 0, and define v = [2{(l(d0, O)-fl(0, T)}]* sgn f.

Then the approximation is

where A = 0,(6, r)O"(8, f) -{(V(0, T)}2, and <&, <f> denote the standard normal distribution
function and density function respectively. The relative error of the approximation is the
larger of O(n~l) and O(m~3/2).

The computed saddlepoint approximation (3-8) to E{P(a)} is shown in Table 1.
Overall, the approximation is seen to give adequate agreement with the simulation
estimates, even for small probability levels, though it underestimates E{P(a)} consider-
ably in the case m = n = 20, for tail probabilities less than about 0-01. A probable cause
is the anomalous behaviour of E(emrl) when r is large. The curve of K(T) = log E(emr2)
follows 10T2, the population cumulant generating function of Xm - /x, reasonably up to
r = O-55, then rises dramatically, as would happen if E(emr2) were dominated by a
mixture of two distinct exponential functions in this region. Inaccuracy of (3-8) is,
presumably, related to this dramatic transition in the functional form of K(T). The
deviation also, of course, explains the poor approximation of the bootstrap in the tail:
noting that the saddlepoint for approximation to P(a) is at r = a, we see that T = 0-55
can be related roughly to a = 0-55, where the bias of the bootstrap becomes most
noticeable.

For the case of estimating

PR(a) = pr(XJp>a\F)

by PR(a) = pr (Ym - axn > 0| Fn), it is found, on writing Z=Ym- axn, that

~ a)}=—\ E(e™2)-,
c—ico
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for c>0. The unconditional moment generating function E(emrZ) is now the coefficient
of Am/m! in Rn(\, r, a), where

R(k,T,a)=f^-J

In the case of an underlying standard exponential distribution, when M(T) = (\ — T) '
and for m = 5, n = 10, a = 1-5, for instance, differentiation of R"(\, T, a) shows that

E(emr2) = {-1048576(680O53005T9 + 2537736860r8 - 87649472T7 - 7720774912r6

-1978825216T 5 + 8815052800T4+223232000T3

-397312O0O0T2+1515520OO0T-163840000)}

x{625(17T-4)(13T-4)(9T-4)(5r-4)2(3r + 4)9(T-4)5r ' . (3-9)

Given E(emT ), the numerical value of E{PR(a)} may be computed, using the residue
theorem, as the sum of the residues of g(r) = E(emTZ)/ T at positive poles, the contour of
integration being completed by a large semicircle in the right halfplane in the usual way.
Recall that if T0 is a pole of g of order k, then the residue of g at T0 is h(k~l)(TO)/(k-l)\,
where/i(T) = (T-T0)kg(T).

In the case (3-9), for example, computation of E{PR(a)} involves calculation of the
residues of g at the poles ro = n, n, | , j and 4, of orders 1,1,1,2 and 5 respectively.
These calculations require at most fourth order differentiation, and are simply performed
using REDUCE. Exact values for E{PL(a)} and E{PR(a)} computed in this way are shown
in Table 2.

For the saddlepoint approximation, corresponding to (3-7) we have

E{PR(a)} = - ^ - 2 \ \ e"™-a) d0~,
(2m) } J T

where 0,(6, T, a) = log Q(6, T, a)-md/n and

r-o

This differs from (3-7) crucially in that there are m + 1 poles at Tr = (r-am/n)~x which
appear to interfere with the region containing the saddlepoint, and cause the approxima-
tion analogous to (3-8) to underestimate the correct values as estimated by the simulations.
We hope to pursue this matter in a subsequent paper.

4. DISCUSSION

We have studied two simple bootstrap estimation problems for small sample sizes and
noted that in each case the bootstrap is noticeably and systematically biased. Hartigan
(1986) has shown previously that the error in approximating the sampling distribution
of Xn — /x by that of Yn —xn is O(n~*). Table 1 shows that this bias is appreciable even
for n = 20 in the case of a normal population. Simulation shows also that the finite
support of Fn leads to marked bias in bootstrap estimation of the distribution of Xm/fj,
in the case of an exponential underlying distribution.

The problems studied yield to an exact theoretical analysis, which is entirely straight-
forward in the normal case, if computer algebra is employed. In the exponential case
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such analysis is feasible, if computationally expensive. In principle, of course, such
computer-algebraic techniques may be extended beyond study of the bias of the bootstrap
estimator.

An approximate theoretical analysis is made feasible by the representation of the
moment generating function E{emrZ) as a complex integral: see (3-3). In the normal case
the saddlepoint method developed works well, except in the extreme tail for m = 20,
n = 20, where the approximation fails for reasons associated with extreme behaviour of
the generating function. In the exponential case, however, the method yields difficulties
which represent a challenge to the saddlepoint approximation technique.

An interesting alternative saddlepoint approach has recently been proposed by Suojin
Wang of the University of Texas, for the case of the difference pivot Xm - //,. Starting
with the saddlepoint approximation to the density of the mean of a bootstrap sample
from a single data sample having mean xn, he expands the formula in powers of Jcn — yu,
before averaging over xn. He considers only the case m = n and obtains results which,
when computed for the standard normal case, are similar to those obtained via (3-8).
We find that the problems of inaccuracy in the extreme tail, which we encountered for
the case m = 20, n = 20, occur for his method also.
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