Title: Efficient integral functional estimation via k-nearest neighbour distances
Authors: Thomas Berrett
In many statistical problems it of interest to estimate integrals functionals, namely functionals of the form

$$
T(f)=\int_{\mathcal{X}} f(x) \phi(x, f(x)) d x
$$

for some known ϕ, given an i.i.d. sample X_{1}, \ldots, X_{m} with density function f. These functionals often have information-theoretic interpretations, such as the differential entropy with $\phi(x, y)=-\log y$, or the Rényi entropy of order α with $\phi(x, y)=y^{\alpha-1}$. We may alternatively be interested in the estimation of two-sample integral functionals of the form

$$
T(f, g)=\int_{\mathcal{X}} f(x) \phi(x, f(x), g(x)) d x
$$

given an additional i.i.d. sample Y_{1}, \ldots, Y_{n} with density function g. These include well known quantities such as the Kullback-Leibler divergence, Rényi divergence and Hellinger distance.

Our proposed estimation procedure is based on k-nearest neighbour distances of our samples $\rho_{(k), i, X}=\left\|X_{i}-X_{(k), i}\right\|$ and $\rho_{(k), i, Y}=\left\|X_{i}-Y_{(k), i}\right\|$ where, for each i, we find the orderings $X_{(1), i}, \ldots, X_{(m-1), i}$ and $Y_{(1), i}, \ldots Y_{(n), i}$ of $\left\{X_{1}, \ldots, X_{m}\right\} \backslash\left\{X_{i}\right\}$ and $\left\{Y_{1}, \ldots, Y_{n}\right\}$ respectively such that

$$
\left\|Y_{(1), i}-X_{i}\right\| \leq \ldots \leq\left\|Y_{(n), i}-X_{i}\right\| \quad \text { and } \quad\left\|X_{(1), i}-X_{i}\right\| \leq \ldots \leq\left\|X_{(m-1), i}-X_{i}\right\|
$$

Our starting point is to consider estimators

$$
\hat{T}_{m}=\frac{1}{m} \sum_{i=1}^{m} \phi\left(X_{i}, \frac{k}{m V_{d} \rho_{(k), i, X}^{d}}\right) \quad \text { and } \quad \hat{T}_{m, n}=\frac{1}{m} \sum_{i=1}^{m} \phi\left(X_{i}, \frac{k_{X}}{m V_{d} \rho_{\left(k_{X}\right), i, X}^{d}}, \frac{k_{Y}}{n V_{d} \rho_{\left(k_{Y}\right), i, Y}^{d}}\right)
$$

which we show can be modified, in some cases, so that the bias is of order $o\left(m^{-1 / 2}\right)$. We then show that these modified estimators achieve the local asymptotic minimax lower bound, in that

$$
m \operatorname{Var} \hat{T}_{m}=\operatorname{Var}\left(\phi(X, f(X))+f(X) \phi^{\prime}(X, f(X))\right)+o(1)
$$

in the one-sample case, and that, in the two-sample case,

$$
m \operatorname{Var} \hat{T}_{m, n}=\operatorname{Var}_{f}\left(\phi+f \phi_{1}\right)+\frac{\zeta}{1-\zeta} \operatorname{Var}_{g}\left(f \phi_{2}\right)+o(1)
$$

where $\zeta=\lim _{m \rightarrow \infty} m /(m+n)$, and we write $\phi_{1}(x, y, z)=\partial \phi / \partial y$ and $\phi_{2}(x, y, z)=\partial \phi / \partial z$.
Suprisingly, when we are interested in estimating the Rényi entropy $T_{\alpha}(f)=\int_{\mathcal{X}} f(x)^{\alpha} d x$, we find that the variance of our efficient estimator is given by $\alpha^{2} \operatorname{Var}\left\{f(X)^{\alpha-1}\right\}$. When $\alpha \in(1 / 2,1)$, this is strictly smaller than the variance of the 'oracle' estimator $T_{m}^{*}=$ $\frac{1}{m} \sum_{i=1}^{m} f\left(X_{i}\right)^{\alpha-1}$, which uses knowledge of the unknown density f.

