Six percent power and barely selective inference

Art B. Owen

Stanford University

WHOA-PSI 2019

It is now a little controversial to test a sharp null hypothesis like $H_0: \theta = 0$. For one thing, we are almost always quite sure that $\theta \neq 0$ before gathering any data. A classical justification for testing the sharp null anyway, is that once H_0 is rejected we are likely to know the sign of θ about which there may have been genuine doubt. By studying what really happens in low power settings, such as 6% power on a test at 5% significance, Andrew Gelman showed that H_0 can frequently be rejected with the wrong value for sign(θ), as well as grossly exagerated magnitude $|\theta|$. His numerics were not quite right, because sign errors of 24% stem from about 5.5% power but the larger point is valid. A simple, though subtle, remedy is to choose two significance levels α_1 and $\alpha_S < 1/2$. After testing H_0 at level α_1 , test it again at the more stringent level $\alpha_1 \alpha_S$. If the second test rejects, conclude that $sign(\theta) = sign(\hat{\theta})$, with type I error at most α_S . If only the first test rejects, conclude that $\theta \neq 0$ but make no conclusion about sign(θ). See https://arxiv.org/abs/1610.10028.