Homework 10, Math 4121, due 10, April 2014

- (1) Prove that $\frac{x \log x}{1+x^2} \in L^1([0,1])$. (2) Prove that $\frac{1}{1+x^4 \sin^2 x} \in L^1([0,\infty))$. (3) Let $f : [0,1] \to \mathbb{R}$ be continuous, f(0) = 0 and f'(0) exists. Prove that $f(x)x^r \in L^1([0,1])$ if r > -2.
- (4) Calculate $\Gamma(n+\frac{1}{2})$ for non-negative integers *n*. (Hint: $\int_0^\infty e^{-x^2} dx =$
- (5) If $\phi : (a, b) \to \mathbb{R}$ is continuous, prove that it is convex if and only if $\phi(\frac{x+y}{2}) \leq \frac{1}{2}(\phi(x) + \phi(y))$. (6) Let $\phi : (a, b) \to (0, \infty)$ be any function such that $\log \phi$ is convex.
- Prove that ϕ is convex.