Homework 10, Math 4121, due 10, April 2014
(1) Prove that $\frac{x \log x}{1+x^{2}} \in L^{1}([0,1])$.
(2) Prove that $\frac{1}{1+x^{4} \sin ^{2} x} \in L^{1}([0, \infty))$.
(3) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous, $f(0)=0$ and $f^{\prime}(0)$ exists. Prove that $f(x) x^{r} \in L^{1}([0,1])$ if $r>-2$.
(4) Calculate $\Gamma\left(n+\frac{1}{2}\right)$ for non-negative integers n. (Hint: $\int_{0}^{\infty} e^{-x^{2}} d x=$ $\frac{\sqrt{\pi}}{2}$.)
(5) If $\phi:(a, b) \rightarrow \mathbb{R}$ is continuous, prove that it is convex if and only if $\phi\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(\phi(x)+\phi(y))$.
(6) Let $\phi:(a, b) \rightarrow(0, \infty)$ be any function such that $\log \phi$ is convex. Prove that ϕ is convex.

