Homework 11, Math 4121, due 17, April 2014

(1) For $0<r<p<s<\infty$, prove that $L^{r} \cap L^{s} \subset L^{p}$. Further, if $\mu(X)<\infty$, prove that $L^{s} \subset L^{r}$ if $0<r<s<\infty$.
(2) If f, g are positive measurable functions on X with $\mu(X)=1$ such that $f(x) g(x) \geq 1$ for all $x \in X$, prove that $\int_{X} f d \mu \int_{X} g d \mu \geq$ 1.
(3) Let $X=(0, \infty)$ and let $f \in C_{c}(X)$ which is positive. Define $F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t$ for $x \in X$. Prove that $F \in L^{p}(X)$ for any $p, 1<p<\infty$ and $\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}$. (Same is true for any $\left.f \in L^{p}(X).\right)$
(4) Suppose $\mu(X)=1$ and $f: X \rightarrow[0, \infty]$ a measurable function. Let $A=\int_{X} f d \mu$. Then prove that, $\sqrt{1+A^{2}} \leq \int_{X} \sqrt{1+f^{2}} d \mu \leq$ $1+A$. If $X=(0,1)$ with the Lebesgue measure and $f=g^{\prime}$ for a differentiable function, this must be familiar to you from calculus
(5) Let $p . q$ be conjugate with $1<p, q<\infty$. For any $f \in L^{p}$, we have a map $T_{f}: L^{q} \rightarrow \mathbb{R}$ defined as $T_{f}(g)=\int_{X} f g d \mu$.
(a) If $L: L^{q} \rightarrow \mathbb{R}$ is a linear functional, prove that L is continuous if and only if there exists a non-negative number l such that $|L(g)| \leq l\|g\|_{q}$ for all g.
(b) Prove that $\left|T_{f}(g)\right| \leq\|f\|_{p}\|g\|_{q}$. Deduce that T_{f} is a continuous linear functional.
(c) Denoting by H the set of all continuous linear functionals on L^{q}, for any $L \in H$, define $\|L\|_{H}=\inf \{l \geq 0 \| L(g) \mid \leq$ $\left.l\|g\|_{q}\right\}$ and prove that this makes H a normed linear space. (The last phrase just means H is a vector space and the norm has all the basic properties of a norm in L^{p}-spaces.)
(d) Prove that the map $A: L^{p} \rightarrow H$ defined by $f \mapsto T_{f}$ is continuous linear with $\|f\|_{p}=\left\|T_{f}\right\|_{H}$ for all f. (In fact, this map is a bijection.)

