Homework 11, Math 4121, due 17, April 2014

- (1) For $0 < r < p < s < \infty$, prove that $L^r \cap L^s \subset L^p$. Further, if $\mu(X) < \infty$, prove that $L^s \subset L^r$ if $0 < r < s < \infty$.
- (2) If f, g are positive measurable functions on X with $\mu(X) = 1$ such that $f(x)g(x) \ge 1$ for all $x \in X$, prove that $\int_X f d\mu \int_X g d\mu \ge 1$.
- (3) Let $X = (0, \infty)$ and let $f \in C_c(X)$ which is positive. Define $F(x) = \frac{1}{x} \int_0^x f(t) dt$ for $x \in X$. Prove that $F \in L^p(X)$ for any $p, 1 and <math>||F||_p \leq \frac{p}{p-1} ||f||_p$. (Same is true for any $f \in L^p(X)$.)
- (4) Suppose $\mu(X) = 1$ and $f: X \to [0, \infty]$ a measurable function. Let $A = \int_X f d\mu$. Then prove that, $\sqrt{1 + A^2} \leq \int_X \sqrt{1 + f^2} d\mu \leq 1 + A$. If X = (0, 1) with the Lebesgue measure and f = g' for a differentiable function, this must be familiar to you from calculus
- (5) Let p.q be conjugate with $1 < p, q < \infty$. For any $f \in L^p$, we have a map $T_f : L^q \to \mathbb{R}$ defined as $T_f(g) = \int_X fgd\mu$.
 - (a) If $L : L^q \to \mathbb{R}$ is a linear functional, prove that L is continuous if and only if there exists a non-negative number l such that $|L(g)| \leq l||g||_q$ for all g.
 - (b) Prove that $|T_f(g)| \leq ||f||_p ||g||_q$. Deduce that T_f is a continuous linear functional.
 - (c) Denoting by H the set of all continuous linear functionals on L^q , for any $L \in H$, define $||L||_H = \inf\{l \ge 0 ||L(g)| \le l||g||_q\}$ and prove that this makes H a normed linear space. (The last phrase just means H is a vector space and the norm has all the basic properties of a norm in L^p -spaces.)
 - (d) Prove that the map $A : L^p \to H$ defined by $f \mapsto T_f$ is continuous linear with $||f||_p = ||T_f||_H$ for all f. (In fact, this map is a bijection.)