Homework 12, Math 4121, due 24, April 2014

All problems are routine and should require little or no thinking. We will denote by Ω_n an open set in \mathbb{R}^n .

- (1) Let $f : \Omega_n \to \mathbb{R}$ be a function which has all partial derivatives $D_1 f, \ldots, D_n f$ for all points in Ω_n . If $\mathbf{p} \in \Omega_n$ where f has a local maximum or minimum, prove that $D_k f(\mathbf{p}) = 0$ for all k.
- (2) Calculate the directional derivatives $f'(\mathbf{p}; \mathbf{u})$ for the following functions $f : \mathbb{R}^n \to \mathbb{R}$ where \mathbf{u} is any vector.
 - 1) $f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$ for a fixed vector \mathbf{a} ; 2) $f(\mathbf{x}) = ||\mathbf{x}||^2$.
- (3) Let $f : \mathbb{R} \to \mathbb{R}^2$ be defined as $f(x) = (x^2, x^3)$. Given any $\mathbf{a} \in \mathbb{R}^2$, find a z with 0 < z < 1 such that $\mathbf{a} \cdot (f(1) f(0)) = \mathbf{a} \cdot f'(z)$.
- (4) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function and let $g : \mathbb{R}^3 \to \mathbb{R}$ be defined as $g(x, y, z) = f(x^2 + y^2 + z^2)$. Prove that, $||\nabla g(x, y, z)||^2 = 4(x^2 + y^2 + z^2)f'(x^2 + y^2 + z^2)^2$
- (5) Let $f : \Omega_n \to \mathbb{R}$ be a function with the property that if $\mathbf{x}, \alpha \mathbf{x} \in \Omega_n$ for some $\alpha \in \mathbb{R}$, then $f(\alpha \mathbf{x}) = \alpha^p f(\mathbf{x})$, for a fixed $p \in \mathbb{R}$. If f is differentiable at $\mathbf{x} \in \Omega_n$, show that $\mathbf{x} \cdot \nabla f(\mathbf{x}) = pf(\mathbf{x})$.