Homework 2, Math 4121, due 30 Jan 2014

- (1) If {a_n} is a decreasing sequence and ∑a_n converges, prove that lim_{n→∞} na_n = 0. This gives another proof that ∑ ¹/_n diverges.
 (2) Prove that ∑_{p,prime} ¹/_p diverges. (Hint: You may use e^{2x} ≥ (1 x)⁻¹ if x ∈ [0, ¹/₂].)
- (3) Show that the Cauchy product of $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+1}}$ with itself is a divergent series.
- (4) Prove by induction, $\prod_{k=2}^{n} \frac{k^3 1}{k^3 + 1} = \frac{2}{3} \frac{n^2 + n + 1}{n(n+1)}$. Deduce that $\prod_{k=2}^{\infty} \frac{k^3 1}{k^3 + 1} =$
- (5) Prove that for any real number x,

$$\sin x = x \prod_{n=1}^{\infty} \cos \frac{x}{2^n}.$$

(6) Let $u_1 = \sqrt{2}$ and for $n \ge 2$, $u_n = \sqrt{2 + u_{n-1}}$ (where square roots always mean positive square roots). Prove that,

$$\frac{2}{\pi} = \prod_{n=1}^{\infty} \frac{u_n}{2}.$$

(Hint: Use the previous problem.) This is generally believed to be the first infinite product written down, in the 1500's.