Homework 4, Math 4121, due 13 Feb 2014

- (1) Prove that $\sum_{n=0}^{\infty} (n+1)z^n$ has radius of convergence 1 and thus defines a function F(z) on B(0,1) with F(0) = 1. Find a power series expansion for 1/F(z) near the origin.
- (2) Prove that $\sum_{n=1}^{\infty} \frac{x}{1+n^2x^2}$ converges pointwise for any x > 0 and the convergence is uniform in $[r, \infty)$ for any r > 0. So, we get a continuous function F(x) for x > 0 defined by this series. Calculate $\lim_{x\downarrow 0} F(x)$.
- (3) Let f be a continuous function on \mathbb{R} and assume that $\lim_{x\to+\infty} f(x) =$ A, a finite number. What can you say about $\lim_{n\to\infty} \int_0^2 f(nx) dx$?
- (4) Prove the formula 3 ∑_{n=0}[∞] 1/(3n)! = e + 2e^{-1/2} cos √3/2.
 (5) Assume f(z) = ∑_{n=0}[∞] a_nzⁿ is a powerseries (over complex numbers) with radius of convergence R > 0. Prove that the closed set $\{a \in B(0, R) | f(a) = 0\}$ is discrete (that is, has no accumulation points) unless f(z) = 0 for all $z \in B(0, R)$.
- (6) Consider the function $f(x) = \frac{1}{1+x^2}$ on \mathbb{R} . Prove that for any point $a \in \mathbb{R}$, f has a power series expansion $f(x) = \sum_{n=0}^{\infty} a_n(x - x)$ $a)^n$ with radius of convergence $\sqrt{a^2+1}$.