Homework 4, Math 4121, due 13 Feb 2014

(1) Prove that $\sum_{n=0}^{\infty}(n+1) z^{n}$ has radius of convergence 1 and thus defines a function $F(z)$ on $B(0,1)$ with $F(0)=1$. Find a power series expansion for $1 / F(z)$ near the origin.
(2) Prove that $\sum_{n=1}^{\infty} \frac{x}{1+n^{2} x^{2}}$ converges pointwise for any $x>0$ and the convergence is uniform in $[r, \infty)$ for any $r>0$. So, we get a continuous function $F(x)$ for $x>0$ defined by this series. Calculate $\lim _{x \downarrow 0} F(x)$.
(3) Let f be a continuous function on \mathbb{R} and assume that $\lim _{x \rightarrow+\infty} f(x)=$ A, a finite number. What can you say about $\lim _{n \rightarrow \infty} \int_{0}^{2} f(n x) d x$?
(4) Prove the formula $3 \sum_{n=0}^{\infty} \frac{1}{(3 n)!}=e+2 e^{-\frac{1}{2}} \cos \frac{\sqrt{3}}{2}$.
(5) Assume $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is a powerseries (over complex numbers) with radius of convergence $R>0$. Prove that the closed set $\{a \in B(0, R) \mid f(a)=0\}$ is discrete (that is, has no accumulation points) unless $f(z)=0$ for all $z \in B(0, R)$.
(6) Consider the function $f(x)=\frac{1}{1+x^{2}}$ on \mathbb{R}. Prove that for any point $a \in \mathbb{R}, f$ has a power series expansion $f(x)=\sum_{n=0}^{\infty} a_{n}(x-$ a) ${ }^{n}$ with radius of convergence $\sqrt{a^{2}+1}$.

