Homework 5, Math 4121, due 20 Feb 2014

- (1) (a) Let f be continuous on [a, b], a compact interval. Show that there exists a polynomial P of degree at most one such that (f + P)(a) = (f + P)(b) = 0. Conclude that fcan be extended to a continuous function on all of \mathbb{R} . (This avoids Tietze extension theorem, though in this case it is trivial).
 - (b) Further, if f is in $C^1([a, b])$ (this means, f is continuously differentiable in (a, b), the appropriate one sided limits exist for derivatives at a, b and the resulting function is continuous on [a, b]), show that there exists a polynomial P of degree at most three such that f + P and its first derivatives vanish at a, b. Conclude that f can be extended to a function in $C^1(\mathbb{R})$. (Same argument can be used for C^k functions for any $k \in \mathbb{N}$ using polynomials of degree 2k+1).
- (2) (a) If f, g are continuous on \mathbb{R} and one of them vanishes outside [a, b], prove that f * g is continuous.
 - (b) Let $f \in C^1(\mathbb{R})$ and vanish outside [a, b] and let g be continuous on \mathbb{R} . Prove that $f * g \in C^1(\mathbb{R})$ and (f * g)' = f' * g. (Similar argument will also work for C^k functions).
- (3) (a) Given $N \in \mathbb{N}$, a closed bounded interval [a, b] and any k with $0 \leq k \leq N$, show that there is a polynomial P_k of degree at most N such that $\int_a^b P_k(x) x^j dx = 0$ for all $j \neq k$ with $0 \leq j \leq N$ and $\int_a^b P_k(x) x^k dx = 1$. (Rudimentary linear algebra could help.)
 - (b) Let polynomials P_n converge uniformly to f on [a, b] and assume that deg $P_n \leq N$ for a fixed N. Prove that f is a polynomial of degree at most N.
- (4) Calculate (and describe) f * f where f is the characteristic function of [0,1]. That is, f(x) = 1 if $x \in [0,1]$ and zero elsewhere.
- (5) Let $A_m = \int_{-1}^{1} (1 x^2)^m dx$ and show that $A_m = A_{m-1} \frac{A_m}{2m}$ for $m \ge 1$. (Integration by parts).