Homework 5, Math 4121, due 20 Feb 2014
(1) (a) Let $f$ be continuous on $[a, b]$, a compact interval. Show that there exists a polynomial $P$ of degree at most one such that $(f+P)(a)=(f+P)(b)=0$. Conclude that $f$ can be extended to a continuous function on all of $\mathbb{R}$. (This avoids Tietze extension theorem, though in this case it is trivial).
(b) Further, if $f$ is in $C^{1}([a, b])$ (this means, $f$ is continuously differentiable in ( $a, b$ ), the appropriate one sided limits exist for derivatives at $a, b$ and the resulting function is continuous on $[a, b]$ ), show that there exists a polynomial $P$ of degree at most three such that $f+P$ and its first derivatives vanish at $a, b$. Conclude that $f$ can be extended to a function in $C^{1}(\mathbb{R})$. (Same argument can be used for $C^{k}$ functions for any $k \in \mathbb{N}$ using polynomials of degree $2 k+1$ ).
(2) (a) If $f, g$ are continuous on $\mathbb{R}$ and one of them vanishes outside [ $a, b]$, prove that $f * g$ is continuous.
(b) Let $f \in C^{1}(\mathbb{R})$ and vanish outside $[a, b]$ and let $g$ be continuous on $\mathbb{R}$. Prove that $f * g \in C^{1}(\mathbb{R})$ and $(f * g)^{\prime}=f^{\prime} * g$. (Similar argument will also work for $C^{k}$ functions).
(3) (a) Given $N \in \mathbb{N}$, a closed bounded interval $[a, b]$ and any $k$ with $0 \leq k \leq N$, show that there is a polynomial $P_{k}$ of degree at most $N$ such that $\int_{a}^{b} P_{k}(x) x^{j} d x=0$ for all $j \neq k$ with $0 \leq j \leq N$ and $\int_{a}^{b} P_{k}(x) x^{k} d x=1$. (Rudimentary linear algebra could help.)
(b) Let polynomials $P_{n}$ converge uniformly to $f$ on $[a, b]$ and assume that $\operatorname{deg} P_{n} \leq N$ for a fixed $N$. Prove that $f$ is a polynomial of degree at most $N$.
(4) Calculate (and describe) $f * f$ where $f$ is the characteristic function of $[0,1]$. That is, $f(x)=1$ if $x \in[0,1]$ and zero elsewhere.
(5) Let $A_{m}=\int_{-1}^{1}\left(1-x^{2}\right)^{m} d x$ and show that $A_{m}=A_{m-1}-\frac{A_{m}}{2 m}$ for $m \geq 1$. (Integration by parts).

