## Homework 6, Math 4121, due 27, Feb 2014

equicontinuous=uniformly equicontinuous, for brevity in the following.
(1) If $\left\{f_{n}\right\}$ is an equicontinuous sequence of functions on a compact interval and $f_{n} \rightarrow f$ pointwise, prove that the convergence is uniform.
(2) If $\left|f_{n}(x)-f_{n}(y)\right| \leq M|x-y|^{\alpha}$ for some fixed $M$ and $\alpha>0$ and all $x, y$ in a compact interval for all $n$, show that $\left\{f_{n}\right\}$ is equicontinuous.
(3) Let $\left\{f_{n}\right\}$ be a sequence of $C^{\infty}$ functions on a compact interval such that for any integer $k \geq 0$, there exists an $M_{k}$ such that $\left|f_{n}^{(k)}(x)\right| \leq M_{k}$ for all $x$ and $n$. Prove that there exists a subsequence converging uniformly, together with all its derivatives to a $C^{\infty}$ function.
(4) Prove that the set of all polynomials of degree at most $N$ (fixed) and coefficients in $[-1,1]$ is uniformly bounded and equicontinuous in any compact interval.
(5) Prove that the family of polynomials $P$ of degree at most $N$ with $|P(x)| \leq 1$ on $[0,1]$ is equicontinuous on $[0,1]$.
(6) Let $P_{0}=0$ and $P_{n+1}(x)=P_{n}(x)+\frac{x^{2}-P_{n}^{2}(x)}{2}$.
(a) Prove that

$$
|x|-P_{n+1}(x)=\left(|x|-P_{n}(x)\right)\left(1-\frac{|x|+P_{n}(x)}{2}\right) .
$$

Deduce that $0 \leq P_{n}(x) \leq P_{n+1}(x) \leq|x|$ if $|x| \leq 1$.
(b) Show that $|x|-P_{n}(x) \leq|x|\left(1-\frac{|x|}{2}\right)^{n}<\frac{2}{n+1}$ for $|x| \leq 1$.
(c) Prove that $\left\{P_{n}\right\}$ converges uniformly to the function $g(x)=$ $|x|$ in $[-1,1]$.

