Homework 6, Math 4121, due 27, Feb 2014

equicontinuous=uniformly equicontinuous, for brevity in the following.

- (1) If $\{f_n\}$ is an equicontinuous sequence of functions on a compact interval and $f_n \to f$ pointwise, prove that the convergence is uniform.
- (2) If $|f_n(x) f_n(y)| \leq M|x y|^{\alpha}$ for some fixed M and $\alpha > 0$ and all x, y in a compact interval for all n, show that $\{f_n\}$ is equicontinuous.
- (3) Let $\{f_n\}$ be a sequence of C^{∞} functions on a compact interval such that for any integer $k \ge 0$, there exists an M_k such that $|f_n^{(k)}(x)| \leq M_k$ for all x and n. Prove that there exists a subsequence converging uniformly, together with all its derivatives to a C^{∞} function.
- (4) Prove that the set of all polynomials of degree at most N (fixed) and coefficients in [-1, 1] is uniformly bounded and equicontinuous in any compact interval.
- (5) Prove that the family of polynomials P of degree at most Nwith $|P(x)| \leq 1$ on [0, 1] is equicontinuous on [0, 1].
- (6) Let $P_0 = 0$ and $P_{n+1}(x) = P_n(x) + \frac{x^2 P_n^2(x)}{2}$. (a) Prove that

$$|x| - P_{n+1}(x) = (|x| - P_n(x)) \left(1 - \frac{|x| + P_n(x)}{2}\right).$$

Deduce that $0 \le P_n(x) \le P_{n+1}(x) \le |x|$ if $|x| \le 1$.

- (b) Show that $|x| P_n(x) \le |x|(1 \frac{|x|}{2})^n < \frac{2}{n+1}$ for $|x| \le 1$. (c) Prove that $\{P_n\}$ converges uniformly to the function g(x) =
- |x| in [-1, 1].