Homework 7, Math 4121, due 6, March 2014

In the following, (X, \mathcal{F}) will be a measurable space.
(1) Let $f: X \rightarrow \mathbb{R}$ (or the extended real line) be a function. Prove that it is measurable if and only if for any rational number q, $\{x \in X \mid f(x) \geq q\} \in \mathcal{F}$.
(2) Let $Y \subset X$ and let $\mathcal{G}=\{A \in \mathcal{F} \mid A \subset Y\}$. Prove that \mathcal{G} is a σ-algebra for Y.
(3) Prove that if f, g are measurable functions from $X \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$, then $c f$ is measurable and $f+g$ is measurable. Deduce that the set $\{x \mid f(x) \geq g(x)\}$ is measurable. (Note: If functions have range the extended real line, $f+g$ may not make sense at points for example where $f(x)=\infty, g(x)=-\infty$.)
(4) Prove that if f is measurable from $X \rightarrow \mathbb{R}$, so is f^{2}. Deduce that if f, g measurable, so is $f g$.
(5) If X is a finite set and \mathcal{F} is the set of all subsets of X, describe all possible positive measures $\mu: \mathcal{F} \rightarrow[0, \infty]$.
(6) Let X be an uncountable set and let \mathcal{F} be the collection of subsets $A \subset X$ such that either A or A^{c} is countable. Prove that \mathcal{F} is a σ-algebra. Define $\mu: F \rightarrow[0, \infty]$ by $\mu(A)=0$ if it is countable and $\mu(A)=1$ if it is uncountable. Prove that μ is a positive measure.

