Solutions to Homework 3, Math 308, Spring 2010

(1) For $u = e^x \cos y$ verify that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ and $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

We calculate all the required derivatives.

\[
\frac{\partial u}{\partial x} = u, \\
\frac{\partial u}{\partial y} = -e^x \sin y \\
\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = u \\
\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) = -e^x \sin y \\
\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) = -e^x \sin y \\
\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) = -e^x \cos y = -u
\]

The rest is clear.

(2) For a function $f(x, y)$ in two variables let the Maclaurin series be $f(x, y) = \sum_{i,j=0}^{\infty} a_{ij} x^i y^j$. Find expressions for a_{ij} in terms of i, j for the following functions.

(a) $f(x, y) = \sin(x + y)$

It is convenient to introduce the notation $[a/2]$ for integers a to mean the largest integer less than or equal to $a/2$. For example,

\[
\left[\frac{0}{2} \right] = 0, \quad \left[\frac{1}{2} \right] = 0, \quad \left[\frac{2}{2} \right] = 1, \quad \left[\frac{7}{2} \right] = 3, \quad \text{etc.}
\]

Then $a_{ij} = 0$ if $i + j$ is even. If $i + j$ is odd, then,

\[a_{ij} = (-1)^{[i+j]/2} \frac{1}{i! j!}.
\]

(b) $f(x, y) = \frac{1}{x+y}$

$a_{ij} = 0$ if $i \neq j$ and $a_{ii} = 1$ for all i.

(3) The thin lens formula is $i^{-1} + o^{-1} = f^{-1}$, where f is the focal length, o and i, the distances from the lens to the object and image respectively. If $i = 15$ when $o = 10$, use differentials to find i when $o = 10.1$, for a given lens.

Taking differentials, we get $i^{-2} di + o^{-2} do = -d(f^{-1}) = 0$ since the focal length is constant, and thus, we have, by putting,
\[i = 15, o = 10 \text{ and } do = 10.1 - 10 = 0.1, \text{ we get } di = -0.225 \]
and thus the value for \(i \) is \(15 - 0.225 = 14.775 \).

(4) Use differentials to estimate the change in
\[f(x) = \int_0^x \frac{e^{-t}}{t^2 + 0.51} dt \]
if \(x \) changes from 0.7 to 0.71.
Here, \(df(x) = \frac{e^{-x}}{x^2 + 0.51} dx \) and putting \(x = 0.7 \) and \(dx = 0.01 \),
we can calculate \(df(x) \), which is just \(e^{-0.7}/100 \).

(5) Given that \(z = (x + y)^5 \), and \(y = \sin 10x \), find \(\frac{dz}{dx} \).
We have, by chain rule, if we put \(u = x + y \),
\[\frac{dz}{dx} = \frac{dz}{du} \cdot \frac{du}{dx}. \]
\[\frac{dz}{du} = 5u^4 = 5(x + y)^4 \text{ and } \frac{du}{dx} = 1 + 10 \cos 10x. \text{ Thus, } \frac{dz}{dx} = 5(x + y)^4(1 + 10 \cos 10x). \]

(6) If \(P_i \)'s are finitely many points in the plane with masses \(m_i \) at
these points, the formula for the moment of inertia at a point \(P \)
is given by \(\sum m_i d(P_i, P)^2 \), where \(d(P_i, P) \) is the distance
from \(P_i \) to \(P \). Given masses \(m_i \) at \(P_i = (x_i, y_i) \) find the co-ordinates
of the point \(P \) where the moment of inertia is least.
If the co-ordinates of \(P \) are \((x, y) \), then we want to minimize
the function, \(M(x, y) = \sum m_i (x - x_i)^2 + \sum m_i (y - y_i)^2 \). So, we
equate the two partial derivatives to zero to get,
\[\sum m_i (x - x_i) = 0 \quad \sum m_i (y - y_i) = 0 \]
yielding
\[x = \frac{\sum m_i x_i}{\sum m_i}, \quad y = \frac{\sum m_i y_i}{\sum m_i}. \]
It is clear that this point should give the minimum (and not
a maximum). If you are not convinced, you may use the second
derivative test. But, from the physical situation, clearly this can
not be a maximum, since if you choose \(x, y \) large, the moment
of inertia clearly increases without limit.

(7) If we made a can with a circular base and top , whose total
(outer) surface area is \(24\pi \) square meters, what would be the
maximum possible volume?
If \(r \) is the radius of the can and \(h \) its height, then the total
surface area is \(A(r, h) = 2\pi rh + 2\pi r^2 \) and its volume is \(V(r, h) = \pi r^2 h \). If we use the Lagrange multiplier technique, we look at
\(F(r, h) = V - \lambda A \) and put the derivatives of \(F \) with respect to
\(r, h \) zero and using the fact \(A = 24\pi \) one can easily solve these
to get, $\lambda = 1, r = 2, h = 4$ and thus, $V = 16\pi$ cubic meters. Again, for physical reasons or otherwise, one can easily see that this is the maximum (and not a minimum).