Answers to Homework 7, Math 308

1. Compute the divergence and curl of the vector field \(\mathbf{V} = x \sin y \mathbf{i} + \cos y \mathbf{j} + xy \mathbf{k} \).

 \[
 \text{div} \, \mathbf{V} = 0 \quad \text{and} \quad \text{curl} \, \mathbf{V} = xi - yj - x \cos yk.
 \]

2. Calculate the Laplacian \(\nabla^2 \left(\frac{1}{\sqrt{x^2 + y^2 + z^2}} \right) \).

 This is zero.

3. Calculate the line integral \(\int \frac{xdy - ydx}{x^2 + y^2} \) along the following path. Start from (1, 0), go along the x-axis to (a, 0) where \(a > 0 \), then go counterclockwise along the semicircle with radius \(a \), ending at \((-a, 0)\) and go along the x-axis to \((-1, 0)\).

4. If \(C \) is any closed loop in the plane, show that \(\oint_C y \cos xy \, dx + x \cos xy \, dy = 0 \).

 This is just an application of Green’s theorem. If \(R \) is the region enclosed by \(C \) (rigorously speaking, you may have to look at several pieces if the curve crosses itself), then we have

 \[
 \oint_C y \cos xy \, dx + x \cos xy \, dy = \iint_R \left(\frac{\partial(y \cos xy)}{\partial x} - \frac{\partial(x \cos xy)}{\partial y} \right) \, dx \, dy
 = \iint_R (\cos xy - xy \sin xy - \cos xy + xy \sin xy) \, dx \, dy
 = \iint_R 0 \, dx \, dy = 0
 \]

5. For the force field \(\mathbf{F} = (y + z) \mathbf{i} - (x + z) \mathbf{j} + (x + y) \mathbf{k} \), find the work done in moving a particle around the circle \(x^2 + y^2 = 1, z = 0 \) moving counterclockwise.

 \(-2\pi \).

6. Show that the electric field \(\mathbf{E} = q \frac{\mathbf{r}}{r^3} \) is conservative and find a scalar potential \(\phi \) with \(\mathbf{E} = -\nabla \phi \).

 We can take \(\phi = \frac{q}{r} \) in spherical co-ordinates. (Of course this is well defined only upto adding a constant).

7. Calculate \(\oint 2y \, dx - 3x \, dy \) around the square with vertices \((3, 1), (5, 1), (5, 3)\) and \((3, 3)\), without integration.

 By Green’s theorem, if we denote the region by \(R \) and the closed curve consisting of the edges of the square \(C \), then,

 \[
 \oint 2y \, dx - 3x \, dy = \iint_R \left(\frac{\partial(-3x)}{\partial x} - \frac{\partial(2y)}{\partial y} \right) \, dx \, dy
 = \iint_R (-5) \, dx \, dy
 \]

 This is just \(-5\) times the area of the square which is 4 and thus the result is \(-20\).