Homework 11, Math 308, due April 26th

(1) Write down series solutions for the following diferential equations.
(a) $y^{\prime}-y=f(x)$ where $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ with initial condition $y(0)=0$.
(b) $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$.
(2) Calculate $P_{3}(x)$ and $P_{4}(x)$, the third and fourth Legendre polynomials.
(3) If $F(x), A(x)$ are polynomials and $0 \leq k \leq n$ are integers, show that we can write $\frac{d^{k} F^{n}(x) A(x)}{d x^{k}}$ as $F^{n-k}(x) G(x)$ for a polynomial $G(x)$.
(4) Find the Legendre series for the function $f(x)=0,-1<x<0$ and $f(x)=$ $x, 0<x<1$.
(5) Find the Legendre series for $f(x)=P_{n}^{\prime}(x)$.
(6) Let $\Phi(x, h)=\sum P_{n}(x) h^{n}$ be the generating function for Legendre Polynomials. Show that $(x-h) \frac{\partial \Phi}{\partial x}=h \frac{\partial \Phi}{\partial h}$.

