Homework 11, Math 308, due April 26th

- (1) Write down series solutions for the following differential equations. (a) y'-y = f(x) where $f(x) = \sum_{n=0}^{\infty} a_n x^n$ with initial condition y(0) = 0. (b) $x^2 y'' + xy' + y = 0$.
- (2) Calculate $P_3(x)$ and $P_4(x)$, the third and fourth Legendre polynomials.
- (3) If F(x), A(x) are polynomials and 0 ≤ k ≤ n are integers, show that we can write d^kFⁿ(x)A(x)/dx^k as F^{n-k}(x)G(x) for a polynomial G(x).
 (4) Find the Legendre series for the function f(x) = 0, -1 < x < 0 and f(x) =
- x, 0 < x < 1.
- (5) Find the Legendre series for $f(x) = P'_n(x)$.
- (6) Let $\Phi(x,h) = \sum P_n(x)h^n$ be the generating function for Legendre Polynomials. Show that $(x-h)\frac{\partial\Phi}{\partial x} = h\frac{\partial\Phi}{\partial h}$.