Homework 11, Math 308, due April 26th

(1) Write down series solutions for the following differential equations.
 (a) \(y' - y = f(x) \) where \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) with initial condition \(y(0) = 0 \).
 (b) \(x^2 y'' + xy' + y = 0 \).

(2) Calculate \(P_3(x) \) and \(P_4(x) \), the third and fourth Legendre polynomials.

(3) If \(F(x), A(x) \) are polynomials and \(0 \leq k \leq n \) are integers, show that we can write
 \[\frac{d^k F^n(x)}{dx^k} A(x) \] as \(F^{n-k}(x)G(x) \) for a polynomial \(G(x) \).

(4) Find the Legendre series for the function \(f(x) = 0, -1 < x < 0 \) and \(f(x) = x, 0 < x < 1 \).

(5) Find the Legendre series for \(f(x) = P_n'(x) \).

(6) Let \(\Phi(x, h) = \sum P_n(x)h^n \) be the generating function for Legendre Polynomials. Show that \((x - h)\frac{\partial \Phi}{\partial x} = h\frac{\partial \Phi}{\partial h} \).