Homework 12, Math 308, not to be collected

(1) Solve the Laplace equation $\nabla^{2} u(x, y)=0$ with the boundary conditions $u(x, 0)=0$ and $u(0, y)=\sin y$ in the form $u(x, y)=f(x) g(y)$.
(2) Solve the Laplace equation $\nabla^{2} u(x, t)=0$ in Fourier series given the boundary conditions $0 \leq x \leq 20$ with $u(0, t)=u(20, t)=0, u(x, t) \leftarrow 0$ as $t \leftarrow \infty$ and $u(x, 0)=0, x<10$, $=100, x>10$.
(3) Solve the diffusion equation $\frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial u(x, t)}{\partial t}$, for a constant α with the boundary conditions, $0 \leq x \leq 10, u(0, t)=u(10, t)=0$ and $u(x, 0)=$ $0, x<5$ and $u(x, 0)=20, x>5$.
(4) A bar of length 2 is initially at 0°. From $t=0$, the end $x=0$ is held at 0° and the end $x=2$ is held at 100°. Find the time-dependant temperature distribution.

