Homework 2, Math 308, Spring 2010, due Feb 15th
(1) Write the following complex numbers in the form $r e^{i \theta}$.
(a) i^{3}
(b) $\frac{3+i}{2+i}$
(c) $(i+\sqrt{3})^{2}$
(2) Complex numbers have many of the properties of real numbers, but it lacks one important property. You can not say a complex number is less than another. This is meaningless. Show that if z_{1}, z_{2} are complex numbers, $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ (Triangle inequality).
(3) If $a \neq 0$ is a complex number, find all complex numbers z satisfying the equation $e^{z}=a$.
(4) Find all complex numbers z satisfying the equation $z^{8}=1$.
(5) Show that for any natural number $n, z^{n}=1$ has n distinct complex solutions. If $\omega_{0}, \ldots, \omega_{n-1}$ are these solutions, show that $\sum_{i=0}^{n-1} \omega_{i}=0$.
(6) Calculate $\sum_{n=0}^{\infty} \frac{(2+i \pi)^{n}}{2^{n} n!}$.
(7) Find the determinants of the following matrices.

$$
\left|\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right| \text { and }\left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|
$$

(8) Calculate $\mathbf{A} \cdot \mathbf{B}$ and $\mathbf{A} \times \mathbf{B}$ for the following vectors \mathbf{A}, \mathbf{B}.
(a) $\mathbf{A}=2 \mathbf{i}+7 \mathbf{j}-3 \mathbf{k}$ and $\mathbf{B}=\mathbf{i}-\mathbf{j}$.
(b) $\mathbf{A}=3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{B}=2 \mathbf{A}$.
(9) Let \mathbf{A}, \mathbf{B} be vectors in 3 -space, with $\mathbf{A} \times \mathbf{B} \neq 0$.
(a) Show that the determinant d given by,

$$
\left|\begin{array}{ll}
\mathbf{A} \cdot \mathbf{A} & \mathbf{A} \cdot \mathbf{B} \\
\mathbf{A} \cdot \mathbf{B} & \mathbf{B} \cdot \mathbf{B}
\end{array}\right|
$$

is not zero.
(b) If \mathbf{C} is any other vector, show that there exists real numbers a, b, c so that $\mathbf{C}=a \mathbf{A}+b \mathbf{B}+c \mathbf{A} \times \mathbf{B}$.
(10) Calculate the distance from the point $P=(4,7,0)$ to the line given parametrically by $x=2 t, y=3 t, z=4 t$.

