Homework 3, Math 308, Spring 2010, due Feb 22nd

(1) For \(u = e^x \cos y \) verify that \(\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x} \) and \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \).

(2) For a function \(f(x, y) \) in two variables let the Maclaurin series be \(f(x, y) = \sum_{i,j=0}^{\infty} a_{ij} x^i y^j \). Find expressions for \(a_{ij} \) in terms of \(i, j \) for the following functions.
 (a) \(f(x, y) = \sin(x + y) \)
 (b) \(f(x, y) = \frac{1}{1-xy} \)

(3) The thin lens formula is \(i^{-1} + o^{-1} = f^{-1} \), where \(f \) is the focal length, \(o \) and \(i \), the distances from the lens to the object and image respectively. If \(i = 15 \) when \(o = 10 \), use differentials to find \(i \) when \(o = 10.1 \), for a given lens.

(4) Use differentials to estimate the change in \(f(x) = \int_0^x e^{-t} dt \) if \(x \) changes from 0.7 to 0.71.

(5) Given that \(z = (x + y)^5 \), and \(y = \sin 10x \), find \(\frac{dz}{dx} \).

(6) If \(P_i \)'s are finitely many points in the plane with masses \(m_i \) at these points, the formula for the moment of inertia at a point \(P \) is given by \(\sum m_i d(P_i, P)^2 \), where \(d(P_i, P) \) is the distance from \(P_i \) to \(P \). Given masses \(m_i \) at \(P_i = (x_i, y_i) \) find the co-ordinates of the point \(P \) where the moment of inertia is least.

(7) If we made a can with a circular base and top whose total (outer) surface area is \(24\pi \) square meters, what would be the maximum possible volume?