Homework 3, Math 308, Spring 2010, due Feb 22nd
(1) For For $u=e^{x} \cos y$ verify that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$ and $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
(2) For a function $f(x, y)$ in two variables let the Maclaurin series be $f(x, y)=\sum_{i, j=0}^{\infty} a_{i j} x^{i} y^{j}$. Find expressions for $a_{i j}$ in terms of i, j for the following functions.
(a) $f(x, y)=\sin (x+y)$
(b) $f(x, y)=\frac{1}{1-x y}$
(3) The thin lens formula is $i^{-1}+o^{-1}=f^{-1}$, where f is the focal length, o and i, the distances from the lens to the object and image respectively. If $i=15$ when $o=10$, use differentials to find i when $o=10.1$, for a given lens.
(4) Use differentials to estimate the change in

$$
f(x)=\int_{0}^{x} \frac{e^{-t}}{t^{2}+0.51} d t
$$

if x changes from 0.7 to 0.71 .
(5) Given that $z=(x+y)^{5}$, and $y=\sin 10 x$, find $\frac{d z}{d x}$.
(6) If P_{i} 's are finitely many points in the plane with masses m_{i} at these points, the formula for the moment of inertia at a point P is given by $\sum m_{i} d\left(P_{i}, P\right)^{2}$, where $d\left(P_{i}, P\right)$ is the distance from P_{i} to P. Given masses m_{i} at $P_{i}=\left(x_{i}, y_{i}\right)$ find the co-ordinates of the point P where the moment of inertia is least.
(7) If we made a can with a circular base and top whose total (outer) surface area is 24π square meters, what would be the maximum possible volume?

