Homework 5, Math 308, Spring 2010, due March 15th
(1) Calculate $\iint\left(9+2 y^{2}\right)^{-1} d x d y$ over the quadrilateral with vertices $(1,3),(3,3),(2,6),(6,6)$.
(2) Find the volume in the first octant bounded by the coordinate planes and the plane $x+2 y+z=4$.
(3) Calculate the following integral by changing the order of integration (since it can not be done as it stands, easily).

$$
\int_{x=0}^{2} \int_{y=x}^{2} e^{-y^{2} / 2} d y d x
$$

(4) Let S be a circle with center $(0,4)$ and radius $r<4$ in the $x y$-plane. Calculate the volume enclosed and the surface area when it is revolved around the x-axis. (This object is called a torus, which is doughnut shaped).
(5) Let $y=f(x), a \leq x \leq b$ be an arc where we assume that $f(x)>$ 0 for all x in this interval. Write down integrals expressing the area under the arc (that is between the arc and the x-axis), the arc length, the volume of the solid generated when revolved about the x-axis and the surface area of this solid of revolution.
(6) Find the volume inside the cone $3 z^{2}=x^{2}+y^{2}$, above the plane $z=2$ and inside the sphere of radius six with center the origin, using spherical coordinates.
(7) Compute the gravitational attraction on a unit mass at the origin due to the mass (of constant density, say ρ) of a body which is bounded by the sphere $r=2 a$ and above the $z=a$ plane. (Denote by G, the gravitational constant, so that the force between two point masses m_{1}, m_{2} situated at a distance r is $\left.G m_{1} m_{2} / r^{2}\right)$.

