Homework 6, Math 308, due March 22nd

(1) Let $\mathbf{A}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ be a vector with its tail at the origin. Assume that it rotates around the x-axis with angular velocity $\boldsymbol{\omega}$. Calculate (as a vector) the linear velocity of the head of \mathbf{A}.
(2) Prove the following for arbitrary vectors as specified.
(a) $(\mathbf{A} \cdot \mathbf{B})^{2} \leq|\mathbf{A}|^{2}|\mathbf{B}|^{2}$.
(b) $(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$. (This is called Lagrange's identity).
(c) $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})+\mathbf{B} \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=0$. (This is called Jacobi's identity).
(3) Let the position vector of a particle at time t be given by $\mathbf{r}=\mathbf{i} \cos t+$ $\mathbf{j} \sin t+\mathbf{k} t$. Show that $|\mathbf{v}|$ and $|\mathbf{a}|$ are constant, where \mathbf{v} is the velocity and \mathbf{a} is the acceleration.
(4) The position vector of a particle is $\mathbf{r}=r(t) \mathbf{e}_{r}$ in polar coordinates. (This is not quite precise from a mathematical point of view, but in Physics, it seems common and they manipulate this formally). Find its velocity and acceleration in polar coordinates.
(5) Show that in polar coordinates, $\boldsymbol{\nabla} f=\mathbf{e}_{r} \frac{\partial f}{\partial r}+\mathbf{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}$.
(6) Let $f=e^{x} \cos y$ represent the temperature at a point (x, y). Find the direction in which the temperature is increasing most rapidly at $(1,-\pi / 4)$ and the magnitude of the rate of increase.

