Homework 7, Math 308, due March 29th

(1) Compute the diveregence and curl of the vector field $\mathbf{V}=x \sin y \mathbf{i}+\cos y \mathbf{j}+$ $x y \mathbf{k}$.
(2) Calculate the Laplacian $\nabla^{2}\left(\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$.
(3) Calculate the line integral $\int \frac{x d y-y d x}{x^{2}+y^{2}}$ along the following path. Start from $(1,0)$, go along the x-axis to $(a, 0)$ where $a>0$, then go counterclockwise along the semicircle with radius a, ending at $(-a, 0)$ and go along the x-axis to $(-1,0)$.
(4) If C is any closed loop in the plane, show that $\oint_{C} y \cos x y d x+x \cos x y d y=$ 0.
(5) For the force field $\mathbf{F}=(y+z) \mathbf{i}-(x+z) \mathbf{j}+(x+y) \mathbf{k}$, find the work done in moving a particle around the circle $x^{2}+y^{2}=1, z=0$ moving counterclockwise.
(6) Show that the electric field $\mathbf{E}=q \frac{\mathbf{r}}{r^{3}}$ is conservative and find a scalar potential ϕ with $\mathbf{E}=-\boldsymbol{\nabla} \phi$.
(7) Calculate $\oint 2 y d x-3 x d y$ around the square with vertices $(3,1),(5,1),(5,3)$ and $(3,3)$, without integration.

