Homework 7, Math 308, due March 29th

- (1) Compute the divergence and curl of the vector field $\mathbf{V} = x \sin y \mathbf{i} + \cos y \mathbf{j} + xy \mathbf{k}$.
- (2) Calculate the Laplacian $\nabla^2 \left(\frac{1}{\sqrt{x^2 + y^2 + z^2}}\right)$. (3) Calculate the line integral $\int \frac{x dy - y dx}{x^2 + y^2}$ along the following path. Start from
- (3) Calculate the line integral $\int \frac{dx^2 + y^2}{x^2 + y^2}$ along the following path. Start from (1,0), go along the x-axis to (a,0) where a > 0, then go counterclockwise along the semicircle with radius a, ending at (-a,0) and go along the x-axis to (-1,0).
- (4) If C is any closed loop in the plane, show that $\oint_C y \cos xy \, dx + x \cos xy \, dy = 0$.
- (5) For the force field $\mathbf{F} = (y + z)\mathbf{i} (x + z)\mathbf{j} + (x + y)\mathbf{k}$, find the work done in moving a particle around the circle $x^2 + y^2 = 1, z = 0$ moving counterclockwise.
- (6) Show that the electric field $\mathbf{E} = q \frac{\mathbf{r}}{r^3}$ is conservative and find a scalar potential ϕ with $\mathbf{E} = -\nabla \phi$.
- (7) Calculate $\oint 2ydx 3xdy$ around the square with vertices (3, 1), (5, 1), (5, 3) and (3, 3), without integration.