Homework 9, Math 308, due April 12th

(1) Calculate the Fourier coefficients a_k, b_k for the periodic function, f(x) = $\pi + x, -\pi < x < 0, f(x) = \pi - x, 0 < x < \pi$. Calculate the sum of the series.

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$

Deduce the sum of the series $\zeta(2) = \sum_{k=1}^{\infty} \frac{1}{k^2}$. (2) Calculate the Fourier coefficients in the exponential Fourier series for the function, $f(x) = 1 + x, -\pi < x < \pi$. Calculate the sum of the series,

$$1 - \frac{1}{3} + \frac{1}{5} - \cdots$$

- (3) If f(x) = a₀/2 + ∑₁∞/2 a_k cos kx + ∑₁∞/2 b_k sin kx = ∑_-∞ c_ne^{inx}, caculate c_n, c_{-n} in terms of a_n, b_n and a_n, b_n in terms of c_n, c_{-n}.
 (4) Calculate the Forier transforms of the functions f(x) = 1, 0 < x < 1, zero
- elsewhere and the function f(x) = x, 0 < x < 1 and zero elsewhere.
- (5) Find the Fourier transform of $f(x) = e^{-|x|}$. Verify Parseval's theorem in this case.
- (6) Calculate the Fourier transform of $f(x) = \cos x, -\pi/2 < x < \pi/2$ and zero elsewhere. Use this to evaluate

$$\int_0^\infty \frac{\cos^2(x\pi/2)}{(1-x^2)^2} dx.$$