Homework 9, Math 308, due April 12th

(1) Calculate the Fourier coefficients a_{k}, b_{k} for the periodic function, $f(x)=$ $\pi+x,-\pi<x<0, f(x)=\pi-x, 0<x<\pi$. Calculate the sum of the series,

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots
$$

Deduce the sum of the series $\zeta(2)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}$.
(2) Calculate the Fourier coefficients in the exponential Fourier series for the function, $f(x)=1+x,-\pi<x<\pi$. Calculate the sum of the series,

$$
1-\frac{1}{3}+\frac{1}{5}-\cdots
$$

(3) If $f(x)=\frac{a_{0}}{2}+\sum_{1}^{\infty} a_{k} \cos k x+\sum_{1}^{\infty} b_{k} \sin k x=\sum_{-\infty}^{\infty} c_{n} e^{i n x}$, caculate c_{n}, c_{-n} in terms of a_{n}, b_{n} and a_{n}, b_{n} in terms of c_{n}, c_{-n}.
(4) Calculate the Forier transforms of the functions $f(x)=1,0<x<1$, zero elsewhere and the function $f(x)=x, 0<x<1$ and zero elsewhere.
(5) Find the Fourier tramsform of $f(x)=e^{-|x|}$. Verify Parseval's theorem in this case.
(6) Calculate the Fourier transform of $f(x)=\cos x,-\pi / 2<x<\pi / 2$ and zero elsewhere. Use this to evaluate

$$
\int_{0}^{\infty} \frac{\cos ^{2}(x \pi / 2)}{\left(1-x^{2}\right)^{2}} d x
$$

