
We want to study the maxima and minima of the function f(x, y)
with the constraint g(x, y) = 0. As you remember from one variable
calculus, one usually finds the ‘critical points’ some of which may or
may not be maximum or minimum, but all maxima and minima can
be found among the critical points. (To decide maximum or minimum,
one must use eithere the ‘second derivative test’ or some other means,
so we will just try to find the critical points.) Also, rememeber, that
calculus actually only gives ‘local’ maxima and minima.

As I said in class, one needs to parametrize the curve g = 0, at least
near any given point in the region R of interest. So, for mathematical
precision, one need to assume that at least one of ∂g

∂x
, ∂g
∂y

to be non-zero

at any point of R. This is the part which usually get swept under the
rug in less rigorous discussions. (For example, if the region R contains
the origin, and g = x2 − y3, then we will run into problems.) So,
we will alwyas assume this. What is the advantage? This is known
as implicit function theorem, a very important, useful and most-often
quoted theorem.

Theorem 1. Let ∂g
∂y
6= 0 at a point P = (x0, y0) where g(P ) = 0.

Then in a neighbourhood of P , we can solve y as a function of x. That
is there exists a function y = φ(x) near P , with y0 = φ(x0), so that
g(x, φ(x)) = 0 for all x in an interval containing x0.

Proof. This is just a sketch. By multiplying g by a non-zero constant,
we may assume ∂g

∂y
(P ) = 1. Then we solve for φ by approximation.

For simplicity of notation, let me also assume that P is the origin.
What happens if we put y = − ∂g

∂x
(P )x + x2φ1(x) where φ1 is to be

determined? One can easily check using the Maclaurin expansion, that
g(x, y(x)) looks like x2g1(x) for some g1. Using g1, one can solve for
a suitable φ1 so that now if we put y = − ∂g

∂x
(P )x + ax2 + φ2(x)x3,

then g(x, y(x)) = x3g2. We continue this way to get a series expansion
for y as a function of x. (Look up a book on Advanced Calculus or
Analysis for more details. Of course, we are tacitly assuming that g
has all derivatives here, but there are simpler proofs where only the
first derivatives are used.)

�

The more general version is as follows, which can be used to show
Lagrage multiplier results for more constraints in more variables.

Theorem 2. Let g1(x1, . . . , xn), g2(x1, . . . , xn), . . . , gm(x1, . . . , xn) be m
functions with m < n and the property that if P = (a1, . . . , an) is a
point in n-space where all the gi’s are zero, then the Jacobian matrix
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J(g1, . . . , gm) defined as the matrix whose ijth entry is ∂gi
∂xj

has rank

m (the maximum possible) at P . So, we assume without loss of gen-
erality that the first m × m minor of this matrix does not vanish at
P . Then there exists functions φi(xm+1, . . . , xn) for 1 ≤ i ≤ m so
that, ai = φi(am+1, . . . , an) and g(φ1, φ2, . . . , φm, xm+1, . . . , xn) = 0 in
a neighbourhood of P .

As an example, let us take m = 1 and let g = x21 + x22 + · · ·+ x2n − 1
and P = (1, 0, . . . , 0). Then, ∂g

∂x1
6= 0 at P (and all others are zero).

Then it is clear that we can take φ1 =
√

1− x22 − · · · − x2n, where
we mean the positive square root, near P . You can see that if our
point is P = (−1, 0, . . . , 0), then we should have taken the negative
square root function. You can see that at different points, we may
need different functions and only certain variable can be written in
terms of the others.

Theorem 3. The following are equivalent, with notation as above.

(1) A point P = (x0, y0) is a critical point of f with constraint
g = 0.

(2) g(P ) = 0 and ∂f
∂x

∂g
∂y
− ∂f

∂y
∂g
∂x

= 0 at P .

(3) There exists a λ so that g(P ) = 0, ∂f
∂x

(P ) + λ ∂g
∂x

(P ) = 0 and
∂f
∂y

(P ) + λ∂g
∂y

(P ) = 0.

Proof. Let us show that the first implies the second. By assumption,
we have at least one of ∂g

∂x
, ∂g
∂y

is not zero at P . so let us assume that
∂g
∂y

(P ) 6= 0, the other case being similar. Then we have a φ(x), so that

φ(x0) = y0 and g(x, φ(x)) = 0 at all points near x0. So, the curve g = 0
is defined as y = φ(x) near this point. Thus, we are looking at the one
variable function f(x, φ(x)), whose critical points we seek. But, P is a

critical point implies that df(x,φ(x))
dx

= 0 at x0. Expanding, we get,

∂f

∂x
(x, φ(x)) +

∂f

∂y
(x, φ(x))φ′(x) = 0

at x = x0. We also have,

∂g

∂x
(x, φ(x)) +

∂g

∂y
(x, φ(x))φ′(x) = 0

at x0. Solving for φ′ from the second and substituting in the first, we
get the second statement.

To go from the second to the third, if we take λ = −∂f
∂y

(P )/∂g
∂y

(P ),

(this is allowed, since ∂g
∂y

(P ) 6= 0), then it is easy to see that the three

equations are statisfied once you have (2).
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Finally we will show that (3) implies (2), since we have not precisely
defined (1). As before we substitute for λ from the last equation in the
last but one to get, ∂f

∂x
∂g
∂y
− ∂f

∂y
∂g
∂x

= 0 at P . �

Here is the more general version.

Theorem 4. Let f be a function in n variables and 0 = gi, 1 ≤ i ≤
m < n be the constraints satsfying the property stated in the implicit
function theorem. Then a point P = (a1, . . . an) is a critical point of
f with the given constraints if and only if there exists λ1, . . . , λm such
that these satisfy the n + m equations, ∂f

∂xi
+

∑
λk

∂gk
∂xi

= 0, 1 ≤ i ≤ n
and gk = 0, 1 ≤ k ≤ m at P .


