ANSWERS TO QUIZ 2

Show your work not just your final answer

(1) Define two matrices

$$
A=\left(\begin{array}{cc}
5 & 2 \\
-1 & 3
\end{array}\right) ; \quad B=\left(\begin{array}{cc}
2 & 1 \\
-4 & 0
\end{array}\right) ;
$$

Compute $A B-B A$.

Solution:

$$
\begin{gathered}
A B=\left(\begin{array}{cc}
2 & 5 \\
-14 & 1
\end{array}\right) ; \quad B A=\left(\begin{array}{cc}
9 & 7 \\
-20 & 8
\end{array}\right) ; \\
A B-B A=\left(\begin{array}{cc}
-7 & -2 \\
6 & 7
\end{array}\right)
\end{gathered}
$$

(2) Consider the 1×4 matrix,

$$
C=\left[\begin{array}{llll}
1 & 2 & -1 & -2
\end{array}\right]
$$

Compute CC ${ }^{T}$.

Solution:

$$
C C^{T}=\left[\begin{array}{llll}
1 & 2 & -1 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
2 \\
-1 \\
-2
\end{array}\right]=1+4+1+4=10
$$

(3) Find the inverse of the following matrix, if it exists:

$$
\left[\begin{array}{cc}
2 & 7 \\
3 & 11
\end{array}\right]
$$

Solution: The inverse exists because the deteminant is nonzero:
$a d-b c=(2)(11)-(7)(3)=1$.
Use the formula for inverses of 2×2 matrices:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Thus

$$
\left[\begin{array}{cc}
2 & 7 \\
3 & 11
\end{array}\right]^{-1}=\left[\begin{array}{cc}
11 & -7 \\
-3 & 2
\end{array}\right]
$$

(4) Find an invertible 2×2 matrix A such that $A+A^{T}$ is singular.

Solution: Many solutions exist. Perhaps the simplest is

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

which has two pivot columns hence is invertible, but for which $A+A^{T}=0$ has all of \mathbf{R}^{2} as a nontrivial nullspace and thus is singular.
(5) For what value of k is the following matrix singular:

$$
\left[\begin{array}{cc}
2 & 8 \\
k & -7
\end{array}\right]
$$

Solution: The matrix is singular if and only the determinant is 0 , so solve for k in
$0=a d-b c=(2)(-7)-(8)(k)=-14-8 k \Longleftrightarrow k=-7 / 4$
(6) The 2×2 elementary matrix E can be obtained from the identity using the row operation $R_{2}=R_{2}+3 R_{1}$. Find $E A$ if

$$
A=\left[\begin{array}{cc}
-8 & -1 \\
1 & 8
\end{array}\right]
$$

Solution: First find E :

$$
E=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]
$$

Next, compute EA:
$E A=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{cc}-8 & -1 \\ 1 & 8\end{array}\right] \Longrightarrow E A=\left[\begin{array}{cc}-8 & -1 \\ -23 & 5\end{array}\right]$
Equivalently, recognize that multiplication by E on the left adds 3 times row 1 into row 2 of A.
(7) Find the LU factorization of the following matrix. No row interchanges should be made.

$$
A=\left[\begin{array}{ccc}
2 & -2 & -1 \\
8 & -9 & -6 \\
10 & -7 & 5
\end{array}\right]
$$

Solution: The first column of L is obtained by dividing the first column of A by the diagonal element $a_{11}=2$, and the partially row reduced matrix $A^{(1)}$ is obtained by subtracting the respective multiples of row 1 of A from rows 2 and 3:

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
5 & * & 1
\end{array}\right] \quad A^{(1)}=\left[\begin{array}{ccc}
2 & -2 & -1 \\
0 & -1 & -2 \\
0 & 3 & 10
\end{array}\right]
$$

The second column of L is obtained by dividing the second column of $A^{(1)}$ by the diagonal element $a_{22}=-1$, and the upper triangular matrix $U=A^{(2)}$ is obtained by subtracting the resulting multiple of row 2 of $A^{(1)}$ from row 3:

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
4 & 1 & 0 \\
5 & -3 & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
2 & -2 & -1 \\
0 & -1 & -2 \\
0 & 0 & 4
\end{array}\right]
$$

NOTE: it is wise to check your work by multiplying $L U$ and comparing with A.
(8) Use the following LU factorization to find all solutions to $A \mathbf{x}=\mathbf{b}$:

$$
A=L U=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & -1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & -2 \\
0 & -9 \\
0 & 0
\end{array}\right] ; \quad \mathbf{b}=\left[\begin{array}{c}
-42 \\
-189 \\
-147
\end{array}\right]
$$

Solution: First solve $L \mathbf{y}=\mathbf{b}$ for \mathbf{y} :

$$
L \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
3 y_{1}+y_{2} \\
5 y_{1}-y_{2}+y_{3}
\end{array}\right]=\mathbf{b}=\left[\begin{array}{c}
-42 \\
-189 \\
-147
\end{array}\right]
$$

This gives

$$
\begin{aligned}
& y_{1}=b_{1}=-42 \\
& y_{2}=b_{2}-3 y_{1}=-189-(3)(-42)=-63 \\
& \text { and } \\
& y_{3}=b_{3}+y_{2}-5 y_{1}=-147+(-63)-(5)(-42)=0
\end{aligned}
$$

Next, solve $U \mathbf{x}=\mathbf{y}$ for \mathbf{x} :

$$
U \mathbf{x}=\left[\begin{array}{c}
4 x_{1}-2 x_{2} \\
-9 x_{2} \\
0
\end{array}\right]=\mathbf{y}=\left[\begin{array}{c}
-42 \\
-63 \\
0
\end{array}\right]
$$

This is a consistent system which we may solve with

$$
\begin{aligned}
& x_{2}=(-63) /(-9)=7 \text { and } \\
& x_{1}=\left(-42+2 x_{2}\right) /(4)=(-42+(2)(7)) /(4)=-7 .
\end{aligned}
$$

Hence the unique solution to $A \mathbf{x}=\mathbf{b}$ is

$$
\mathbf{x}=\left[\begin{array}{c}
-7 \\
7
\end{array}\right]
$$

(9) Find the rank and nullity of the following matrix:

$$
A=\left[\begin{array}{ccccc}
2 & -6 & -4 & 1 & 2 \\
1 & -3 & -3 & -2 & 2 \\
-1 & 3 & 2 & 0 & 0
\end{array}\right]
$$

Solution: Row reduce A to find the number of pivot columns. It is convenient to first interchange rows 1 and 2:

$$
\left[\begin{array}{rrrrr}
1 & -3 & -3 & -2 & 2 \\
2 & -6 & -4 & 1 & 2 \\
-1 & 3 & 2 & 0 & 0
\end{array}\right]
$$

Second, replace $R_{2} \leftarrow R_{2}-2 R_{1}$ and $R_{3} \leftarrow R_{3}+R_{1}$:

$$
\left[\begin{array}{rrrrr}
1 & -3 & -3 & -2 & 2 \\
0 & 0 & 2 & 5 & -2 \\
0 & 0 & -1 & -2 & 2
\end{array}\right]
$$

Third, replace $R_{2} \leftarrow R_{2}+2 R_{3}$:

$$
\left[\begin{array}{rrrrr}
1 & -3 & -3 & -2 & 2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & -1 & -2 & 2
\end{array}\right]
$$

Finally, multiply $R_{3} \leftarrow-R_{3}$ and interchange $R_{2} \leftrightarrow R_{3}$:

$$
\left[\begin{array}{rrrrr}
1 & -3 & -3 & -2 & 2 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

This results in echelon form for A. Three columns (1, 3, and $4)$ are pivot columns, and two columns (2 and 5) are free columns. Thus,

$$
\operatorname{rank}(A)=3, \quad \operatorname{nullity}(A)=2
$$

(10) Let A be a 12×17 matrix with rank 5 . Find the nullity of A.

Solution: Use the rank+nullity theorem. $\operatorname{Rank}(A)+\operatorname{nullity}(A)=17$, the number of columns of A, so $5+\operatorname{nullity}(A)=17$, so

$$
\text { nullity }(A)=12
$$

(11) Find the determinant of the following matrix:

$$
A=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
2 & -6 & -4 & 0 & 0 \\
1 & -3 & -3 & -1 & 0 \\
-1 & 5 & 12 & 0 & 3
\end{array}\right]
$$

Solution: The determinant of an upper triangular matrix such as this A is the product of the diagonal elements, so

$$
\operatorname{det} A=(2)(1)(-4)(-1)(3)=24
$$

(12) Use expansion by minors to find the determinant of the following matrix:

$$
A=\left[\begin{array}{cccc}
2 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 \\
2 & -6 & 0 & 0 \\
-1 & 5 & 0 & 3
\end{array}\right]
$$

Solution: This may be done in three steps.
First expand using column 4:

$$
\operatorname{det} A=(3) \operatorname{det}\left[\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 0 \\
2 & -6 & 0
\end{array}\right]
$$

Second, expand using column 3 of the 3×3 minor:
$\operatorname{det} A=(3) \operatorname{det}\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 0 \\ 2 & -6 & 0\end{array}\right]=(3)(1) \operatorname{det}\left[\begin{array}{cc}2 & 1 \\ 2 & -6\end{array}\right]$
Finally, use the formula $a d-b c$ for the remaining 2×2 minor:

$$
\operatorname{det} A=(3)(1)[(2)(-6)-(1)(2)]=-42
$$

