QUIZ 2

Show your work not just your final answer

(1) Define two matrices

$$
A=\left(\begin{array}{cc}
5 & 2 \\
-1 & 3
\end{array}\right) ; \quad B=\left(\begin{array}{cc}
2 & 1 \\
-4 & 0
\end{array}\right)
$$

Compute $A B-B A$.
(2) Consider the 1×4 matrix,

$$
C=\left[\begin{array}{llll}
1 & 2 & -1 & -2
\end{array}\right]
$$

Compute $C C^{T}$.
(3) Find the inverse of the following matrix, if it exists:

$$
\left[\begin{array}{cc}
2 & 7 \\
3 & 11
\end{array}\right]
$$

(4) Find an invertible 2×2 matrix A such that $A+A^{T}$ is singular.
(5) For what value of k is the following matrix singular:

$$
\left[\begin{array}{cc}
2 & 8 \\
k & -7
\end{array}\right]
$$

(6) The 2×2 elementary matrix E can be obtained from the identity using the row operation $R_{2}=R_{2}+3 R_{1}$. Find $E A$ if

$$
A=\left[\begin{array}{cc}
-8 & -1 \\
1 & 8
\end{array}\right]
$$

(7) Find the LU factorization of the following matrix. No row interchanges should be made.

$$
A=\left[\begin{array}{ccc}
2 & -2 & -1 \\
8 & -9 & -6 \\
10 & -7 & 5
\end{array}\right]
$$

(8) Use the following LU factorization to find all solutions to $A \mathbf{x}=\mathbf{b}$:

$$
A=L U=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
5 & -1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & -2 \\
0 & -9 \\
0 & 0
\end{array}\right] ; \quad \mathbf{b}=\left[\begin{array}{c}
-42 \\
-189 \\
-147
\end{array}\right]
$$

(9) Find the rank and nullity of the following matrix:

$$
A=\left[\begin{array}{ccccc}
2 & -6 & -4 & 1 & 2 \\
1 & -3 & -3 & -2 & 2 \\
-1 & 3 & 2 & 0 & 0
\end{array}\right]
$$

(10) Let A be a 12×17 matrix with rank 5 . Find the nullity of A.
(11) Find the determinant of the following matrix:

$$
A=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
2 & -6 & -4 & 0 & 0 \\
1 & -3 & -3 & -1 & 0 \\
-1 & 5 & 12 & 0 & 3
\end{array}\right]
$$

(12) Use expansion by minors to find the determinant of the following matrix:

$$
A=\left[\begin{array}{cccc}
2 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 \\
2 & -6 & 0 & 0 \\
-1 & 5 & 0 & 3
\end{array}\right]
$$

