Homework 1, Math 310, due Friday 4, September
We will assume that our present knowledge is just the following.
We have the natural numbers or counting numbers, usually denoted by the letter \mathbb{N}. These are just the collection $\{1,2,3, \ldots\}$. These have the following basic properties. Lower case English letters will denote natural numbers in the following.

- closure: We may add two natural numbers to get a natural number. Addition is denoted by the symbol + . Similarly we can multiply two natural numbers to get a natural number. Multiplication is denoted by either a \cdot or just writing the numbers next to each other.
- commutativity: $a+b=b+a$ and $a b=b a$ for all natural numbers a, b.
- associativity: $a+(b+c)=(a+b)+c$ and $a(b c)=(a b) c$ for all natural numbers $a, b . c$.
- distributivity: $a(b+c)=a b+a c$ for all natural numbers a, b, c.
- Notation: In this notation, we have $2=1+1,3=2+1$ etc. and all these are different.
(1) We start with a definition.

Definition 1. A natural number a is called even if there exists another natural number b such that $a=2 b$. A natural number a is called odd if $a+1$ is even.

Write a know-show table and a proof for the following two theorems.

Theorem 1. If a is even, then $a+2$ is even, where a is a natural number.

Theorem 2. If a is even, then $3 a^{2}+4 a+7$ is odd where a is a natural number and the notation a^{2} as usual stands for $a \cdot a$.
(2) With our present knowledge, can you prove that any natural number is either even or odd? If you can, write a proof. If you cannot, explain why
(3) Recall from class the following definition.

Definition 2. If a, b are natural numbers we say a is greater than b, written $a>b$, if there exists a natural number k with $a=b+k$.

Write a know-show table and a proof for the following theorem.

Theorem 3. If a, b are natural numbers and $a>b$, then $a^{2}+$ $b^{2}>2 a b$.
(4) With our present knowledge, can you prove that if a, b are any two natural numbers, then exactly one of the following must occur:

$$
a=b \quad \text { or } \quad a>b \quad \text { or } \quad b>a ?
$$

If you can, write a proof and if you can not, explain why.

