Homework 10, Math 310, due 16th November 2009

When proving a sequence $\left\{x_{n}\right\}$ is a CS, the steps must be always the same. Start with an $\epsilon>0$, which you are not allowed to choose. Then you must say what $N \in \mathbb{N}$ you will choose. This could be a desription depending on ϵ and if it is not obvious such an N exists, you must justify it. Then for this N, you must check that $\left|x_{n}-x_{m}\right|<\epsilon$ for all $n, m \geq N$.
(1) Let $\left\{x_{n}\right\}$ be a sequence and define a new sequence $\left\{y_{n}\right\}$ by the formula, $y_{k}=10^{k}$ for $1 \leq k \leq 100$ and $y_{100+k}=x_{k}$ for $k \in \mathbb{N}$. (So, $y_{1}=10, y_{2}=100, y_{101}=x_{1}, y_{102}=x_{2}$ etc.) Show that $\left\{x_{n}\right\}$ is a CS if and only if $\left\{y_{n}\right\}$ is a CS.
(2) Let $\left\{x_{n}\right\}$ be a sequence and define a new sequence $\left\{y_{n}\right\}$ by the formula, $y_{k}=x_{2 k}$ for all $k \in \mathbb{N}$. Show that if $\left\{x_{n}\right\}$ is a CS so is $\left\{y_{n}\right\}$. Give an example to show that the converse may not hold.
(3) Define a sequence $\left\{x_{n}\right\}$ of rational numbers as,

$$
x_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)} .
$$

(a) Show by induction that $x_{n}=1-\frac{1}{n+1}$. (Hint: $\frac{1}{k(k+1)}=$ $\frac{1}{k}-\frac{1}{k+1}$.)
(b) Show that $\left\{x_{n}\right\}$ is a CS.
(4) Let $0 \leq b_{n} \leq a_{n}$ be rational numbers. Show that if the sequence defined as, $x_{n}=\sum_{k=1}^{n} a_{k}$ is a CS, so is the sequence defined as $y_{n}=\sum_{k=1}^{n} b_{k}$. (Comparison Test).
(5) Show that the following sequences are CS.
(a) The sequence $\left\{z_{n}\right\}$ defined as,

$$
z_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{(-1)^{n-1}}{n} .
$$

(b) The sequence $\left\{u_{n}\right\}$ defined as,

$$
u_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} .
$$

(Hint: One way is to use the previous two problems).
(6) We consider the harmonic series, where

$$
x_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

(a) Show that for any $n \in \mathbb{N}$,

$$
\sum_{k=2^{n}+1}^{2^{n+1}} \frac{1}{k}>\frac{1}{2}
$$

(b) Show that $\left\{x_{n}\right\}$ is not a CS.

