Homework 11, Math 310, due 23rd November 2009

(1) Let \(\{x_n\} \) be a non-decreasing sequence. That is \(x_{n+1} \geq x_n \) for all \(n \). If the set \(\{x_1, x_2, \ldots, x_n, \ldots\} \) is bounded above show that \(\{x_n\} \) is a CS. (This is a very useful fact, since in general deciding whether a sequence is Cauchy is very difficult).

(2) Let \(a_n \leq b_n \leq c_n \) for all \(n \), where all these are rational numbers. Assume that \(\{a_n\}, \{c_n\} \) are CS and \(\{a_n\} \sim \{c_n\} \). Then show that \(\{b_n\} \) is a CS and \(\{a_n\} \sim \{b_n\} \). (This is what you studied in Calculus and called the squeeze theorem).

(3) Let \(\{x_n\} \) be a CS of rational numbers such that \(\{x_n\} \) is not related to the CS, \(0 = \{0\} \) (that is the sequence with all terms zero, whose equivalence class is the zero element in \(\mathbb{R} \)).
 (a) Show that there exists a \(\delta > 0 \) and an \(N \in \mathbb{N} \) so that for all \(n \geq N \), \(|x_n| > \delta \).
 (b) Define a sequence \(\{y_n\} \) by \(y_n = 0 \) if \(n < N \) and \(y_n = x_n^{-1} \) for \(n \geq N \). (This makes sense since \(x_n \neq 0 \) if \(n \geq N \).)
 Show that \(\{y_n\} \) is a CS and \([\{x_n\}][\{y_n\}] = 1 \).

(4) Let \(S \subset \mathbb{R} \) be an infinite bounded set. Show that there exists an infinite sequence \(\{x_n\} \) with \(x_n \in S \) for all \(n \) such that \(\{x_n\} \) is a CS. (Infinite sequence means, \(x_i \neq x_j \) if \(i \neq j \).)

(5) Use the above to prove Theorem 4.4 in the notes.

(6) Let \(I_n = [a_n, b_n] \) be closed intervals with \(a_n < b_n \) for all \(n \). Assume that \(I_n \subset I_{n-1} \) for all \(n \). Then show that \(\bigcap_{n=1}^{\infty} I_n \neq \emptyset \). That is there is an \(\alpha \) such that \(\alpha \in I_n \) for all \(n \). (This result is called the nested interval theorem).