Homework 11, Math 310, due 23rd November 2009
(1) Let $\left\{x_{n}\right\}$ be a non-decreasing sequence. That is $x_{n+1} \geq x_{n}$ for all n. If the set $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ is bounded above show that $\left\{x_{n}\right\}$ is a CS. (This is a very useful fact, since in general deciding whether a sequence is Cauchy is very difficult).
(2) Let $a_{n} \leq b_{n} \leq c_{n}$ for all n, where all these are rational numbers. Assume that $\left\{a_{n}\right\},\left\{c_{n}\right\}$ are CS and $\left\{a_{n}\right\} \sim\left\{c_{n}\right\}$. Then show that $\left\{b_{n}\right\}$ is a CS and $\left\{a_{n}\right\} \sim\left\{b_{n}\right\}$. (This is what you studied in Calculus and called the squeeze theorem).
(3) Let $\left\{x_{n}\right\}$ be a CS of rational numbers such that $\left\{x_{n}\right\}$ is not related to the CS, $0=\{0\}$ (that is the sequence with all terms zero, whose equivalence class is the zero element in \mathbb{R}).
(a) Show that there exists a $\delta>0$ and an $N \in \mathbb{N}$ so that for all $n \geq N,\left|x_{n}\right|>\delta$.
(b) Define a sequence $\left\{y_{n}\right\}$ by $y_{n}=0$ if $n<N$ and $y_{n}=x_{n}^{-1}$ for $n \geq N$. (This makes sense since $x_{n} \neq 0$ if $n \geq N$.) Show that $\left\{y_{n}\right\}$ is a CS and $\left[\left\{x_{n}\right\}\right]\left[\left\{y_{n}\right\}\right]=1$.
(4) Let $S \subset \mathbb{R}$ be an infinite bounded set. Show that there exists an infinite sequence $\left\{x_{n}\right\}$ with $x_{n} \in S$ for all n such that $\left\{x_{n}\right\}$ is a CS. (Infinite sequence means, $x_{i} \neq x_{j}$ if $i \neq j$.)
(5) Use the above to prove Theorem 4.4 in the notes.
(6) Let $I_{n}=\left[a_{n}, b_{n}\right]$ be closed intervals with $a_{n}<b_{n}$ for all n. Assume that $I_{n} \subset I_{n-1}$ for all n. Then show that $\cap_{n=1}^{\infty} I_{n} \neq \emptyset$. That is there is an α such that $\alpha \in I_{n}$ for all n. (This result is called the nested interval theorem).

