Homework 12, Math 310, due December 7th
(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and as usual, for real numbers $a \leq b$ we denote by $[a, b]$, the closed interval consisting of real numbers x such that $a \leq x \leq b$.
(a) Show that if $S, T \subset \mathbb{R}$ are bounded sets then so is $S \cup T$.
(b) Show that for $a<b$, real numbers, $f([a, b])=\{f(x) \mid x \in$ $[a, b]\}$ is a bounded set. (Hint: Consider the set $S=\{x \in$ $[a, b] \mid f([a, x])$ is bounded $\})$.
(c) Show that $f([a, b])=[c, d]$ for some real numbers $c \leq d$. (Do not forget the intermediate value theorem).
(2) Show that there are infinitely many points (α, β) on the unit circle $x^{2}+y^{2}=1$ with $\alpha, \beta \in \mathbb{Q}$. (Pythagorean triples).
(3) Consider the equation $x^{2}-2 y^{2}=1$, called the Pell's equation. We wish to find integer solutions to this equation. It is clear that $x=3, y=2$ is such a solution.
(a) Denote by $\mathbb{Z}[\sqrt{2}]$, the set of real numbers of the form $a+$ $b \sqrt{2}$ where $a, b \in \mathbb{Z}$. Show that this set is closed under addition and multiplication.
(b) If $a, b \in \mathbb{Z}$ with $(a+b \sqrt{2})(c+d \sqrt{2})=1$, where $c, d \in \mathbb{Z}$, show that $c=a, d=-b$ or $c=-a, d=b$.
(c) If $a, b \in \mathbb{Z}$ and $(a+b \sqrt{2})(3+2 \sqrt{2})=c+d \sqrt{2}$, show that $c^{2}-2 d^{2}=a^{2}-2 b^{2}$.
(d) If we write $(3+2 \sqrt{2})^{n}=a_{n}+b_{n} \sqrt{2}$ with $a_{n}, b_{n} \in \mathbb{Z}$, show that $a_{n}^{2}-2 b_{n}^{2}=1$.

