Homework 12, Math 310, due December 7th

- (1) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and as usual, for real numbers $a \leq b$ we denote by [a, b], the closed interval consisting of real numbers x such that $a \leq x \leq b$.
 - (a) Show that if $S, T \subset \mathbb{R}$ are bounded sets then so is $S \cup T$.
 - (b) Show that for a < b, real numbers, $f([a, b]) = \{f(x) \mid x \in [a, b]\}$ is a bounded set. (Hint: Consider the set $S = \{x \in [a, b] \mid f([a, x]) \text{ is bounded}\}$).
 - (c) Show that f([a, b]) = [c, d] for some real numbers $c \leq d$. (Do not forget the intermediate value theorem).
- (2) Show that there are infinitely many points (α, β) on the unit circle $x^2 + y^2 = 1$ with $\alpha, \beta \in \mathbb{Q}$. (Pythagorean triples).
- (3) Consider the equation $x^2 2y^2 = 1$, called the Pell's equation. We wish to find integer solutions to this equation. It is clear that x = 3, y = 2 is such a solution.
 - (a) Denote by $\mathbb{Z}[\sqrt{2}]$, the set of real numbers of the form $a + b\sqrt{2}$ where $a, b \in \mathbb{Z}$. Show that this set is closed under addition and multiplication.
 - (b) If $a, b \in \mathbb{Z}$ with $(a + b\sqrt{2})(c + d\sqrt{2}) = 1$, where $c, d \in \mathbb{Z}$, show that c = a, d = -b or c = -a, d = b.
 - (c) If $a, b \in \mathbb{Z}$ and $(a + b\sqrt{2})(3 + 2\sqrt{2}) = c + d\sqrt{2}$, show that $c^2 2d^2 = a^2 2b^2$.
 - (d) If we write $(3 + 2\sqrt{2})^n = a_n + b_n\sqrt{2}$ with $a_n, b_n \in \mathbb{Z}$, show that $a_n^2 2b_n^2 = 1$.