Homework 5, Math 310, due October 5th, Monday
(1) A variation of induction: Let $P(n)$ be predicates for all $n \in \mathbb{N}$. Assume that $P(1)$ is true. Also assume that for any $N \in \mathbb{N}$,

$$
(P(n))(\forall n \leq N) \Rightarrow P(N+1)
$$

Show that $P(n)$ is true for all $n \in \mathbb{N}$.
(2) Another variation: Let $P(n)$ be predicates, with $n \in \mathbb{N}$. Assume that $P(1)$ and $P(2)$ are true. Further assume that $P(n) \Rightarrow$ $P(n+2)$. Then show that $P(n)$ is true for all $n \in \mathbb{N}$.
(3) I start with some elementary properties of division. Our universe is \mathbb{Z}.
(a) If $p, q, a \in \mathbb{Z}$ with $p \neq 0 \neq q$ and if $p \mid q$ and $q \mid a$ then $p \mid a$.
(b) If $0 \neq p \in \mathbb{Z}$ and $p|a, p| b$, then p divides any integer of the form $\alpha a+\beta b$ where $\alpha, \beta \in \mathbb{Z}$.
(c) If $N \neq 0 \neq M$ are integers and if $N \mid M$ and $M \mid N$, then $N= \pm M$. (The notation $N= \pm M$ is the short form to mean that $N=M$ or $N=-M$.)
All these can be proved easily from the definition of division.
Definition 1. If $a, b \in \mathbb{Z}$ at least one of them non-zero, define the greatest common divisor of a and b denoted by $\operatorname{gcd}(a, b)$ as the natural number d such that d divides both a and b and if e is another integer dividing both a, b, then e divides d. For example $\operatorname{gcd}(50,75)=25$.
(a) Let $a, b \in \mathbb{Z}$ with at least one of them non-zero. Show that the set, $S=\{p a+q b \in \mathbb{N} \mid p, q \in \mathbb{Z}\}$ is non-empty.
(b) Let d denote the minimal element of S, assured by induction. Show that d divides a and b using division algorithm.
(c) Show that $d=\operatorname{gcd}(a, b)$. In particular, $\operatorname{gcd}(a, b)$ exists.
(d) Assume that $a, b \in \mathbb{Z}$ with $a \neq 0 \neq b$. If $\operatorname{gcd}(a, b)=1$, show that for any other integer $c, \operatorname{gcd}(a b, c)=\operatorname{gcd}(a, c)$. $\operatorname{gcd}(b, c)$. Give an example where the last equation is false when $\operatorname{gcd}(a, b) \neq 1$.
(4) Prove that for any odd number $n \geq 3$,

$$
\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{4}\right) \cdots\left(1+\frac{(-1)^{n}}{n}\right)=1 .
$$

(5) Prove that for any $n \in \mathbb{N}$,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

