Homework 6, Math 310, due October 12th, Monday

(1) As usual, define $n!=1 \cdot 2 \cdot 3 \cdots n$ where n is any natural number. By convention 0 ! is defined to be 1 . Similarly $\binom{n}{r}$ for $0 \leq r \leq n$ is defined to be,

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

(a) Show that

$$
\binom{n+1}{r+1}=\binom{n}{r}+\binom{n}{r+1}
$$

(b) Prove the binomial theorem,
$(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n}$
(2) Let \mathbb{Z}, the set of integers be the universal set. Write using roster method the following sets.
(a) $A=\left\{a \in \mathbb{Z} \mid a^{2}<7\right\}$.
(b) $B=\{a \in \mathbb{Z} \mid \exists b \in \mathbb{Z}, a b=1\}$.
(c) $C=\{a \in \mathbb{Z} \mid a=3 b+1, b \in \mathbb{Z}\}$.
(3) Let the notation be as in the previous problem. Write using roster method the following sets.
(a) $B \cup C$
(b) $A-C$
(c) $A \cap B \cap C$
(4) Prove that for any three sets $P, Q, R \subseteq \Omega$, where Ω is the universal set, $P \cap(Q \cup R)=(P \cap Q) \cup(P \cap R)$ and $(P \cup Q)^{c}=P^{c} \cap Q^{c}$.
(5) Let $S_{1}, S_{2}, \ldots, S_{n}$ be finite sets.
(a) Show that $\cup_{i=1}^{n} S_{i}$ is a finite set, where the above notation is the short form for $S_{1} \cup S_{2} \cup \cdots \cup S_{n}$.
(b) Show that $\left|\cup_{i=1}^{n} S_{i}\right| \leq \sum_{i=1}^{n}\left|S_{i}\right|$.
(c) If $S_{i} \cap S_{j}=\emptyset$ for all $i \neq j$, show that $\left|\cup_{i=1}^{n} S_{i}\right|=\sum_{i=1}^{n}\left|S_{i}\right|$.

