Homework 8, Math 310, November 2nd

- (1) Define a relation on \mathbb{R} as follows. Two real numbers x, y are equivalent if $x y \in \mathbb{Z}$. Show that this is an equivalence relation. Show that the set of equivalence classes of this relation is (naturally) bijective to the set of points on the unit circle.
- (2) Define a relation on $P = \mathbb{R}^2 \{(0,0)\}$ as follows. If $(a,b), (c,d) \in P$, they are related if for some positive real number $\alpha, a = \alpha c$ and $b = \alpha d$. Show that this is an equivalence realtion and the set of equivalence classes is (naturally) bijective to the points on a unit circle.
- (3) Define a relation on $\mathbb{R}[x]$, the set of polynomials as follows. Two polynomials f(x), g(x) are related if f(0) = g(0). Show that this is an equivalence relation and the set of equivalence classes is (naturally) bijective to \mathbb{R} .
- (4) Let $C(\mathbb{R})$ be the set of all continuous functions on \mathbb{R} . If $f, g \in C(\mathbb{R})$ we say that $f \sim g$ if $\int_0^1 f dx = \int_0^1 g dx$. Show that this is an equivalence realtion. Can you identify the set of equivalence classes with a familiar set?
- (5) Define a realtion on $\mathbb{N} \times \mathbb{N}$ by declaring that (a, b) is related to (c, d) if a + d = b + c. Show that this is an equivalence realtion and the set of equivalence classes is (naturally) bijective to \mathbb{Z} .
- (6) Let $P = \mathbb{Z} \times (\mathbb{Z} \{0\})$, the set of pairs of integers (a, b) with $b \neq 0$. Define a relation on P by declaring that for $(a, b), (c, d) \in P$, $(a, b) \sim (c, d)$ if ad = bc. Show that this is an equivalence realtion and the set of equivalence classes is (naturally) bijective to \mathbb{Q} .
- (7) Define a function $\phi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as follows.

$$\phi(m,n) = \frac{(m+n-2)(m+n-1)}{2} + n.$$

Show that ϕ is a bijection. (A suggestion: Plot the points $(m, n) \in \mathbb{N} \times \mathbb{N}$ and look at $\phi(m, n)$ for small values of m, n).