Homework 10, Math 310, due November 14th, 2011
(1) Define a number $a \in \mathbb{Z}$ to be even if 2 divides a. Define a number to be odd, if it is not even.
(a) Show that a is odd if and only if there exists an integer b such that $a=2 b+1$.
(b) Show that for any integer $a, a^{2}+a+1$ is odd.
(c) If p is an odd prime (that is, p is a prime and $p \neq 2$) and if $p=a^{2}+b^{2}$ for some integers a, b, show that there exists an integer c such that $p=4 c+1$. (The converse is also true, but much harder and related to a very important theorem called Gauss's law of quadratic reciprocity).
(2) Let p be a prime and let $a \geq 0$ be a non-negative integer. Prove that there exists unique integers $a_{0}, a_{1}, \ldots, a_{k}$ for some k with $0 \leq a_{i}<p$ for all i and $a=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{k} p^{k}$. (This is called the p-adic expansion). (Hint: It might be easier to use the third alternate form of induction in the notes).
(3) Let p be a prime and let $\mathbb{N}^{\prime}=\{0\} \cup \mathbb{N} \cup\{\infty\}$, where ∞ is just a symbol. We may define addition in \mathbb{N}^{\prime} as usual for all elements in $\mathbb{N} \cup\{0\}$ and with the rule $a+\infty=\infty$ for all $a \in \mathbb{N}^{\prime}$. We also have the usual inequality in all of \mathbb{N}^{\prime}, if we define $a<\infty$ for all $a \in \mathbb{N} \cup\{0\}$.
(a) If $0 \neq a \in \mathbb{Z}$ show that there exists an $n \in \mathbb{N} \cup\{0\}$ such that p^{n} divides a and p^{n+1} does not divide a. Define $v_{p}(a)=n$.
(b) If we define $v_{p}(0)=\infty$, we get a function $v_{p}: \mathbb{Z} \rightarrow \mathbb{N}^{\prime}$. Prove that $v_{p}(a b)=v_{p}(a)+v_{p}(b)$ for all $a, b \in \mathbb{Z}$.
(c) Prove that $v_{p}(a+b) \geq \min \left\{v_{p}(a), v_{p}(b)\right\}$ for all $a, b \in \mathbb{Z}$.

This function (or some its variants) is called the valuation at p.
(4) Let $A=\mathbb{Z} \times \mathbb{Z}$. Then we can define an addition in A by component wise addition. That is, if $a=\left(a_{1}, a_{2}\right) \in A$ with $a_{1}, a_{2} \in \mathbb{Z}$ and similarly if $b=\left(b_{1}, b_{2}\right)$, define $a+b=\left(a_{1}+b_{1}, a_{2}+\right.$ $\left.b_{2}\right)$. For any two integers r, s, we define a map $\phi_{r, s}: A \rightarrow \mathbb{Z}$ as $\phi_{r, s}\left(a_{1}, a_{2}\right)=r a_{1}+s a_{2}$.
(a) Show that if $a, b \in A$, then $\phi_{r, s}(a+b)=\phi_{r, s}(a)+\phi_{r, s}(b)$.
(b) If $f: A \rightarrow \mathbb{Z}$ is any function with $f(a+b)=f(a)+f(b)$ for all $a, b \in A$, show that there exists $r, s \in \mathbb{Z}$ such that $f=\phi_{r, s}$.
(c) Show that $\phi_{r, s}$ is surjective if and only if $\operatorname{gcd}(r, s)=1$.

