Homework 11, Math 310, due November 21st, 2011

The first problem should be submitted separately to me, which will not count for your homework grade.
(1) Let Σ_{n} be the set $\{1,2, \ldots, n\}=\{k \in \mathbb{N} \mid k \leq n\}$.
(a) If $a \in \Sigma_{n}$, prove that there is a bijection $\phi: \Sigma_{n} \rightarrow \Sigma_{n}$ such that $\phi(a)=n$.
(b) If $f: \Sigma_{n} \rightarrow \Sigma_{m}$ is an injective map, prove that $n \leq m$.
(c) Prove that $\mathcal{P}\left(\Sigma_{n}\right)$, the power set, is bijective to $\Sigma_{2^{n}}$.
(2) Decide whether the following are Cauchy sequences or not (with proofs).
(a) $\left\{x_{n}\right\}$ with $x_{n}=n$.
(b) $\left\{y_{n}\right\}$ with $y_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)}$. (Hint: $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$)
(c) $\left\{z_{n}\right\}$ where $z_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$. (Hint: For $k \geq 2$, show that $\frac{1}{k^{2}} \leq \frac{1}{(k-1) k}$ and use the previous part.)
(3) Define as usual, $n!=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n$ (called n factorial) for any natural number n. By convention, we define $0!=1$.
(a) If $a \in \mathbb{Q}$ and $\epsilon>0$ is a rational number, show that there exists an $N \in \mathbb{N}$ such that for all $n \geq N,\left|\frac{a^{n}}{n!}\right|<\epsilon$. (Hint: Use the fact we showed in class, that given $x \in \mathbb{Q}$ with $|x|<1$ and an $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N,\left|x^{n}\right|<\epsilon$.)
(b) Prove that the sequence $\left\{x_{n}\right\}$ where $x_{n}=\frac{a^{n}}{n!}$ is a Cauchy sequence.
(c) Prove that the sequence $\left\{y_{n}\right\}$ where $y_{n}=\sum_{k=1}^{n} x_{n}$ with x_{n} as in the previous part is a Cauchy sequence.
(4) Define as usual the choose function $\binom{n}{r}$ for $0 \leq r \leq n$ with $n \in \mathbb{N} \cup\{0\}$ as,

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} .
$$

(a) Prove that $\binom{n+1}{r}=\binom{n}{r}+\binom{n}{r-1}$.
(b) Prove (by induction) the binomial theorem for $a, b \in \mathbb{Q}$ and $n \in \mathbb{N} \cup\{0\}$,

$$
(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{r} b^{n-r} .
$$

