Homework 13, Math 310, due December 5th, 2011

The first problem should be submitted separately to me, which will not count for your homework grade.
(1) Let a be a positive rational number. Give two different proofs for the fact $(1+a)^{n} \geq 1+n a$ for any $n \in \mathbb{N}$, one using induction and the other using binomial theorem.
(2) Use the above to prove that given a rational number $a>1$ and A any other rational number, there exists $N \in \mathbb{N}$ such that $a^{N}>A$.
(3) Let a be a fixed positive rational number. Choose (and fix) a natural number $M>a$.
(a) For any $n \in \mathbb{N}$ with $n \geq M$, show that $\frac{a^{n}}{n!} \leq \frac{a^{M}}{M!}\left(\frac{a}{M}\right)^{n-M}$.
(b) Use the previous problem to show that, given $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N, \frac{a^{n}}{n!}<\epsilon$.
(c) We have proved in class that the sequence $\left\{x_{n}\right\}$ where $x_{n}=$ $\sum_{k=0}^{n} b^{n}$ (the geometric series) is a Cauchy sequence if $|b|<$ 1. Use this to prove (using the first part of this problem) that the sequence $\left\{y_{n}\right\}$ where $y_{n}=\sum_{k=0}^{n} \frac{a^{k}}{k!}$ is a Cauchy sequence. (As you have studied in Calculus, this sequence in the limit should give us e^{a}. We hope to define limit by end of this course.)

