Homework 13, Math 310, due December 5th, 2011

The first problem should be submitted separately to me, which will not count for your homework grade.

- (1) Let a be a positive rational number. Give two different proofs for the fact $(1+a)^n \ge 1+na$ for any $n \in \mathbb{N}$, one using induction and the other using binomial theorem.
- (2) Use the above to prove that given a rational number a > 1 and A any other rational number, there exists $N \in \mathbb{N}$ such that $a^N > A.$
- (3) Let a be a fixed positive rational number. Choose (and fix) a natural number M > a.

 - (a) For any $n \in \mathbb{N}$ with $n \ge M$, show that $\frac{a^n}{n!} \le \frac{a^M}{M!} (\frac{a}{M})^{n-M}$. (b) Use the previous problem to show that, given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \ge N$, $\frac{a^n}{n!} < \epsilon$. (c) We have proved in class that the sequence $\{x_n\}$ where $x_n = \sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
 - $\sum_{k=0}^{n} b^{n}$ (the geometric series) is a Cauchy sequence if $|b| < b^{n}$ 1. Use this to prove (using the first part of this problem) that the sequence $\{y_n\}$ where $y_n = \sum_{k=0}^n \frac{a^k}{k!}$ is a Cauchy sequence. (As you have studied in Calculus, this sequence in the *limit* should give us e^a . We hope to define *limit* by end of this course.)