Homework 6, Math 310, due October 17th, 2011
(1) Let S_{1}, S_{2}, T be non-empty sets such that S_{1} is bijective to S_{2}.
(a) Show that $S_{1} \times T$ is bijective to $S_{2} \times T$.
(b) Show that $\mathcal{P}\left(S_{1}\right)$ is bijective to $\mathcal{P}\left(S_{2}\right)$ (where \mathcal{P} stands for power sets).
(c) Show that $\operatorname{Fun}\left(S_{1}, T\right)$ is bijective to $\operatorname{Fun}\left(S_{2}, T\right)$ and $\operatorname{Fun}\left(T, S_{1}\right)$ is bijective to $\operatorname{Fun}\left(T, S_{2}\right)$ where $\operatorname{Fun}(S, T)$ for two sets S, T is the set of all functions from S to T.
(2) Let $S_{1}=\{a\}$ be a set consisting of just one element and let $S_{2}=\{b, c\}$ be a set consisting of two elements.
(a) Show that $S_{1} \times \mathbb{Z}$ is bijective to $S_{2} \times \mathbb{Z}$.
(b) If T is any non-empty set, show that $\operatorname{Fun}\left(T, S_{1}\right)$ is bijective to S_{1} and $\operatorname{Fun}\left(T, S_{2}\right)$ is bijective to $\mathcal{P}(T)$.
(3) Define a relation on \mathbb{R} as follows. For $a, b \in \mathbb{R}, a \sim b$ if $a-b \in \mathbb{Z}$. Prove that this is an equivalence relation. Can you identify the set of equivalence classes with the unit circle in a natural way? (Hint: Trigonometric functions).
(4) Let $A=\mathbb{R}^{2}-\{(0,0)\}$. Define a relation on A by, for $a, b \in A$, $a \sim b$ if $b=\alpha a$ where α is a positive real number. (As usual, we write for $(x, y) \in \mathbb{R}^{2}$ and $\alpha \in \mathbb{R}, \alpha(x, y)$ to mean $\left.(\alpha x, \alpha y)\right)$. Prove that this is an equivalence relation. Can you identify the set of equivalence classes with the unit circle in a natural way?
(5) Let $\mathcal{C}(\mathbb{R})$ be the set of all continuous functions on \mathbb{R}. If $f, g \in$ $\mathcal{C}(\mathbb{R})$ we say that $f \sim g$ if $\int_{0}^{1} f d x=\int_{0}^{1} g d x$. Show that this is an equivalence realtion. Can you identify the set of equivalence classes with a familiar set?
(6) Let $\mathcal{C}(\mathbb{R})$ be as in the previous problem and let \mathcal{O} be the germs of continuous functions at the origin as defined in class. We have a natural surjective map $\pi: \mathcal{C}(\mathbb{R}) \rightarrow \mathcal{O}$. Define addition and multiplication in \mathcal{O} by, $[f] \oplus[g]=[f+g],[f] \otimes[g]=[f g]$.
(a) Prove that the above operations are well defined, as we illustrated in another situation. (This means, you must prove that if $f \sim F$ and $g \sim G$, then $f+g \sim F+G$ and $f g \sim F G$.)
(b) If $f \in \mathcal{C}(\mathbb{R})$ with $f(0) \neq 0$, show that there exisits a $g \in$ $\mathcal{C}(\mathbb{R})$ such that $[f g]=[1]$, where $[1]$ denotes the equivalence class containing the constant function 1 .

