Homework 7, Math 310, due October 24th, 2011

For this homework, you are allowed to use only facts we have proved from set theory.
(1) If A, B are sets, prove that a subset $\Gamma \subset A \times B$ is the graph of some function from A to B if and only if the first projection $p: \Gamma \rightarrow A$ is a bijection.
(2) If $\Gamma \subset A \times B$ is the graph of a function $f: A \rightarrow B$, prove that f is injective if and only if $q: \Gamma \rightarrow B$, the second projection is injective. Similarly, prove that f is surjective if and only if $q: \Gamma \rightarrow B$ is surjective.
(3) Let $f: A \rightarrow B, g: B \rightarrow C$ be functions where A, B, C are sets. Consider $\Gamma_{f} \subset A \times B$, the graph of $f, \Gamma_{g} \subset B \times C$, the graph of g. Now consider the sets $\Gamma_{f} \times C \subset A \times B \times C$ and $A \times \Gamma_{g} \subset A \times B \times C$. Let $\Gamma=\theta\left(\Gamma_{f} \times C \cap A \times \Gamma_{g}\right) \subset A \times C$ where $\theta: A \times B \times C \rightarrow A \times C$ is the projection defined as $\theta((a, b, c))=(a, c)$. Show that Γ is the graph of $g \circ f$.
(4) Let $f: A \rightarrow B$ be a bijection and let $f^{-1}: B \rightarrow A$ its inverse. If $\Gamma \subset A \times B$ is the graph of f, show that the set, $\Gamma^{\prime} \subset B \times A$ defined as $\Gamma^{\prime}=\{(b, a) \mid(a, b) \in \Gamma\}$ is the graph of f^{-1}.
(5) Let $f: A \rightarrow B$ be a surjection and let $g: B \rightarrow C$ be an injection. If $g \circ f$ is a bijection, show that f, g are bijections.

