Homework 9, Math 310, due November 7th, 2011
(1) Given $M \in \mathbb{N}$, show that there exists an $N \in \mathbb{N}$ such that for all $n \geq N, n^{2}+n+1>M$.
(2) Check properties 5 and 11 of integers stated in the section on integers in the notes.
(3) Let $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ be integers with at least one of them nonzero. Define $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ as the number $d \in \mathbb{N}$ such that $d \mid a_{i}$ for all i and if $e \in \mathbb{N}$ divides all the $a_{i} \mathrm{~s}$, then $e \mid d$. Prove that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ exists and is unique.
(4) Let $a, b \in \mathbb{Z}$, both non-zero. A natural number l is called the lowest common multiple, written $\operatorname{lcm}(a, b)$ if $a|l, b| l$ and if $e \in \mathbb{N}$ such that $a|e, b| e$, then $l \mid e$. Prove that $\operatorname{lcm}(a, b)$ exists and is unique. Further prove that $|a b|=\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)$.
(5) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function such that $f(a+b)=f(a)+f(b)$ for all $a, b \in \mathbb{Z}$. Prove that there exists an integer n such that $f(a)=a n$ for all $a \in \mathbb{Z}$. (Hint: What is your guess for this mysterious n ?)
(6) If $a, b \in \mathbb{Z}$, show that $|a-b| \geq||a|-|b||$.
(7) If $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$, show that $\left|a_{0}+a_{1}+\cdots+a_{n}\right| \leq\left|a_{0}\right|+\left|a_{1}\right|+$ $\cdots+\left|a_{n}\right|$.

