Homework 9, Math 310, due November 7th, 2011

- (1) Given $M \in \mathbb{N}$, show that there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, $n^2 + n + 1 > M$.
- (2) Check properties 5 and 11 of integers stated in the section on integers in the notes.
- (3) Let $a_1, \ldots, a_n \in \mathbb{Z}$ be integers with at least one of them nonzero. Define $gcd(a_1, \ldots, a_n)$ as the number $d \in \mathbb{N}$ such that $d|a_i$ for all *i* and if $e \in \mathbb{N}$ divides all the a_i s, then e|d. Prove that $gcd(a_1, \ldots, a_n)$ exists and is unique.
- (4) Let $a, b \in \mathbb{Z}$, both non-zero. A natural number l is called the *lowest common multiple*, written lcm(a, b) if a|l, b|l and if $e \in \mathbb{N}$ such that a|e, b|e, then l|e. Prove that lcm(a, b) exists and is unique. Further prove that |ab| = gcd(a, b)lcm(a, b).
- (5) Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function such that f(a+b) = f(a) + f(b)for all $a, b \in \mathbb{Z}$. Prove that there exists an integer n such that f(a) = an for all $a \in \mathbb{Z}$. (Hint: What is your guess for this mysterious n?)
- (6) If $a, b \in \mathbb{Z}$, show that $|a b| \ge ||a| |b||$.
- (7) If $a_0, a_1, \ldots, a_n \in \mathbb{Z}$, show that $|a_0 + a_1 + \cdots + a_n| \le |a_0| + |a_1| + \cdots + |a_n|$.