
CONSTRUCTION OF NUMBER SYSTEMS

N. MOHAN KUMAR

1. Peano’s Axioms and Natural Numbers

We start with the axioms of Peano.

Peano’s Axioms. N is a set with the following properties.

(1) N has a distinguished element which we call ‘1’.
(2) There exists a distinguished set map σ : N→ N.
(3) σ is one-to-one (injective).
(4) There does not exist an element n ∈ N such that σ(n) = 1. (So,

in particular σ is not surjective).
(5) (Principle of Induction) Let S ⊂ N such that a) 1 ∈ S and b)

if n ∈ S, then σ(n) ∈ S. Then S = N.

We call such a set N to be the set of natural numbers and elements
of this set to be natural numbers.

Lemma 1.1. If n ∈ N and n 6= 1, then there exists a unique m ∈ N
such that σ(m) = n.

Proof. Consider the subset S of N defined as,

S = {n ∈ N | n = 1 orn = σ(m), for somem ∈ N}.
By definition, 1 ∈ S. If n ∈ S, clearly σ(n) ∈ S, again by definition

of S. Thus by the Principle of Induction, we see that S = N. Further
injectivity of σ implies uniqueness as claimed in the lemma. This proves
the lemma. �

We define the operation of addition (denoted by +) by the following
two recursive rules.

(1) For all n ∈ N, n+ 1 = σ(n).
(2) For any n,m ∈ N, n+ σ(m) = σ(n+m).

Notice that by lemma 1.1, any natural number is either 1 or of the
form σ(m) for some unique m ∈ N and thus the defintion of addition
above does define it for any two natural numbers n,m.

Similarly we define multiplication on N (denoted by ·, or sometimes
by just writing letters adjacent to each other, as usual) by the following
two recursive rules.
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(1) For all n ∈ N, n · 1 = n.
(2) For any n,m ∈ N, n · σ(m) = n ·m+ n.

Agian, lemma 1.1 assures that this defines multiplication of any two
natural numbers. This procedure seems a bit informal and logically
suspect. You are of course right. To be completely precise, we have
to prove the Universal Property of Natural Numbers, first. This may
look very abstract and so, if you wish, you may just trust the above
formulas. But, we prove it for those more skeptical and those who are
not afraid of abstractions.

1.1. Universal Property of Natural Numbers.

Theorem 1.1 (Universal Property of Natural Numbers). Let S be any
set, f : S → S be any function and let s ∈ S be a fixed element.
Then there exists a unique function φ : N→ S such that φ(1) = s and
φ ◦ σ = f ◦ φ.

Proof. The follwing proof is rather long, so we will discuss at least some
part of thinking, which is not part of the proof itself. So, this will be
in blue, while the proof itself will be in black.

The theorem asserts the existence and uniqueness of a function φ
with some properties. We will not worry about the uniqueness, which
is easy and concentrate on the existence. Since, at present, we just have
some knowledge of set theory and we have assumed Peano’s axioms,
but little else and none of these tell us how to construct a function. By
the first property we know that φ(1) = s. If we call σ(1) = 2, σ(2) = 3
etc., which are just names we have given, the second property says
φ(2) = φ(σ(2)) = f(φ(1)) = f(s), φ(3) = f(f(s)) etc. But, we have
no logical way of interpreting ‘etc.’. So, we seem to be at an impasse.
Thus, we are forced to rethink our path. Since we know a bit about
sets and how to define them, can we interpret φ in terms of a set? We
have seen that a function gives the graph, which is a set and we can
retrieve the function from the graph. So, let me recall this.

Lemma 1.2. Let A,B be sets. Then a subset Γ ⊂ A×B is the graph
of a function from A to B if and only if p : Γ→ A, the first projection,
is a bijection.

Proof. If Γ is the graph of a function φ : A→ B, then Γ = {(a, φ(a))|a ∈
A}. Then for any a ∈ A, p−1(a) = {(a, φ(a))} and thus p is injective
and surjective. So, p is a bijection.

Now, assume that p : Γ → A is a bijection. Then we can define
φ as φ(a) = q(p−1(a)), where q : Γ → B is the second projection and
p−1 : A→ Γ is the inverse of p, which makes sense since p is a bijection.
I will leave you to check that then Γ is the graph of this function φ. �
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So, in our situation, we need to find a subset Γ ⊂ N × S such that
p : Γ → N is a bijection. What other properties should it have, if this
is going to be the graph of φ asserted in the theorem? Since φ(1) = s,
we must have (1, s) ∈ Γ. Next let us interpret the second condition.
Since Γ is expected to be the graph of the yet unconstructed function
φ, for any n ∈ N, we must have elements of the form (n, φ(n)) ∈ Γ. So,
if (n, t) ∈ Γ, then t is expected to be φ(n). Then, the second condition
says the φ(σ(n)) = f(φ(n)) and hence (σ(n), f(t)) ∈ Γ. This says, if
we define θ : N×S → N×S as θ((n, t)) = (σ(n), f(t)), then θ(Γ) ⊂ Γ.
So, these three conditions will ensure what we need. So, we start the
proof.

First, we prove the existence of φ, uniqueness will be easy. We will
construct the graph of φ, which in turn will define φ. So, we plan
to construct a suitable subset Γ of N × S. First, we have a function
θ : N × S → N × S, given by θ((n, t)) = (σ(n), f(t)) for n ∈ N, t ∈ S.
We will have the required function if we can construct such a subset Γ
satisfying the following three properties.

(1) p : Γ→ N, the first projection, is a bijection.
(2) (1, s) ∈ Γ.
(3) θ(Γ) ⊂ Γ.

If we look for such a subset, clearly nothing immediately strikes one
as a possible candidate. So, we are still stuck. Since Γ has to satisfy the
three conditions above, may be we can find some set satisfying some
of the conditions easily? Here we strike gold, since the set N× S itself
satisfy the second and third conditions. So, may be we should study
all sets satisfying the last two conditions and then look for Γ among
them? At least our search has narrowed down.

Let C be the set of all subsets of N×S satisfying the last two condi-
tions above. Then N× S ∈ C and hence this collection is non-empty.

How do we distinguish our Γ from these sets? If X ∈ C, then we
have (1, s) ∈ X and θ(X) ⊂ X. Since θ((1, s)) = (2, f(s)), θ(2, f(s)) =
(3, f(f(s))) etc. and these are precisely the elements expected to be in
Γ, it seems that Γ ⊂ X. So, the Γ we are looking for seems to be the
‘smallest’ element in C. So, it makes sense to look at the set Γ which
is the intersection of all the sets in C.

Let Γ be the intersection of all elelements in C, which makes sense
since this collection is non-empty. First let us check that Γ ∈ C. This
is easy, since (1, s) ∈ X for all X ∈ C and Γ beng the intersection of
such sets, (1, s) ∈ Γ. Similarly, for any X ∈ C, θ(Γ) ⊂ θ(X) ⊂ X and
thus θ(Γ) ⊂ X for all X ∈ C. So, by definition of Γ, θ(Γ) ⊂ Γ. So, Γ
satisfies the last two conditions and hence Γ ∈ C.
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Now, we tackle the first condition for this Γ. First, let us look at
the set G = θ(Γ) ∪ {(1, s)}. Why should we look at G? I find it a
bit difficult to explain this, but it is similar to the property of N that
we studied, N = σ(N) ∪ {1}. Then clearly G ⊂ Γ, since both θ(Γ)
and {(1, s)} are contained in Γ. On the other hand, (1, s) ∈ G and
θ(G) ⊂ θ(θ(Γ)) ∪ θ({(1, s)} ⊂ θ(Γ) ⊂ G. So, G ∈ C and thus by
definition of Γ, we get Γ ⊂ G. This shows that

θ(Γ) ∪ {(1, s)} = G = Γ. (1)

Now, we check that the first projection p : Γ → N is a bijection. We
use induction for this and so define a set,

T = {n ∈ N|p−1(n) ⊂ Γ has exactly one element}.

Notice that as usual, we have defined this set so that if we can show
T = N, then p would be a bijection.

We have p((1, s)) = 1 and we wish to show that p−1(1) = {(1, s)}.
If not, say (1, t) ∈ p−1(1) with t 6= s. By equation 1, we see that
(1, t) ∈ θ(Γ). So, there exists an element (n, u) ∈ Γ such that (1, t) =
θ((n, u)) = (σ(n), f(u)). This says in particular, 1 = σ(n) contra-
dicting Peano’s axiom. This proves that p−1(1) = {(1, s)} and hence
1 ∈ T .

Next, assume that n ∈ T . Then by definition, we have p−1(n) =
{(n,w)}. Since (n,w) ∈ Γ, we know that θ((n,w)) = (σ(n), f(w)) ∈ Γ,
since θ(Γ) ⊂ Γ. Thus p−1(σ(n)) contains (σ(n), f(w)). If we can show
this is the only element in this set, we would have shown σ(n) ∈ T and
then by induction, we would be done. So, assume that (σ(n), x) ∈ Γ
and we want to show that x = f(w). By Peano’s axiom, (σ(n), x) 6=
(1, s) and hence, from equation 1, we see that (σ(n), x) ∈ θ(Γ) and
thus there is an element (m, y) ∈ Γ with θ((m, y)) = (σ(n), x). Then
σ(m) = σ(n) and f(y) = x. By injectivity of σ, we get m = n. Since
(m, y) = (n, y) ∈ Γ and n ∈ T implies y = w. Then x = f(w) and
thus (σ(n), x) = (σ(n), f(w)) proving what we set out to prove. Thus
T = N and hence p is a bijection.

Thus we have created a function φ : N → S satisfying the two
required conditions.

The above argument shows uniqueness too, since Γ determines φ and
Γ was forced to be the intersection of all elements in C, so it had no
choice. But, no harm in reproving it.

To show uniqueness, let φ′ : N → S be another function satisfying
the two conditions of the theorem. We wish to show φ(n) = φ′(n) for
all n ∈ N and so it makes sense to define the set U = {n ∈ N|φ(n) =
φ′(n)}. Then since φ(1) = (1, s) = φ′(1) by the first condition, we see
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that 1 ∈ U . If n ∈ U , then we have φ(n) = φ′(n) and thus φ(σ(n)) =
f(φ(n)) by second condition and hence, f(φ(n)) = f(φ′(n)) = φ′(σ(n))
again by the second condition for φ′. So, φ(σ(n)) = φ′(σ(n)), proving
σ(n) ∈ U . By induction, U = N and the theorem is proved. �

1.2. Definition of addition and multiplication. Now we are ready
to rigorously define addition and multiplication of natural numbers.
Fix any m ∈ N. We will define an operation for any n ∈ N, m+ n ∈ N
such that m+ 1 = σ(m) and m+ σ(n) = σ(m+ n). For this, consider
S = N, f = σ and s = σ(m) in the above theorem 1.1. Then we have a
function φ : N→ N such that φ(1) = σ(m) and φ ◦ σ = σ ◦φ. So, if we
call φ(n) = m + n (the addition symbol just represents this function),
then it is trivial to check both the above properties.

To define multiplication, again we take, fixing an m ∈ N, S = N,
f : N → N be, f(n) = n + m (which is laready defined) and s = m.
Then we get a function φ : N → N by the Universal property, so that
φ(1) = m and φ(σ(n)) = φ(n) +m. So, if we define m · n = φ(n), then
it staisfies both the properties of multiplication stated earlier and since
m was any element of N, we have defined multiplication for any two
natural numbers.


