Homework 10, Math 310, due November 12th, 2012

- (1) If $x, y \in \mathbb{N}$ and $x^2 > y^2$, prove that x > y.
- (2) Let a > 1 be a natural number. Given $b \in \mathbb{N}$, prove that there exists an $N \in \mathbb{N}$ such that for all $n \ge N$, $a^n \ge b^2 + b$.
- (3) Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ be defined as f(a, b) = (a + 1, b(a + 1)). Consider the function assured by the universal property, $\phi : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, where $\phi(1) = (1, 1)$ and $\phi(n + 1) = f(\phi(n))$. As in last week's home work, let $\psi : \mathbb{N} \to \mathbb{N}$ be defined as $\psi(n) = \pi(\phi(n))$ for all $n \in \mathbb{N}$, where $\pi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is the second projection. Prove that $\psi(n+1) = (n+1)\psi(n)$. (You should be able to recognize that $\psi(n) = n!$, the factorial function).
- (4) Prove that if $a_1, \ldots, a_n \in \mathbb{Z}$, then

 $|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|.$

(5) Prove that if $x, y \in \mathbb{Z}$, then $|x - y| \ge ||x| - |y||$.