Homework 10, Math 310, due November 12th, 2012
(1) If $x, y \in \mathbb{N}$ and $x^{2}>y^{2}$, prove that $x>y$.
(2) Let $a>1$ be a natural number. Given $b \in \mathbb{N}$, prove that there exists an $N \in \mathbb{N}$ such that for all $n \geq N, a^{n} \geq b^{2}+b$.
(3) Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ be defined as $f(a, b)=(a+1, b(a+1))$. Consider the function assured by the universal property, ϕ : $\mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, where $\phi(1)=(1,1)$ and $\phi(n+1)=f(\phi(n))$. As in last week's home work, let $\psi: \mathbb{N} \rightarrow \mathbb{N}$ be defined as $\psi(n)=\pi(\phi(n))$ for all $n \in \mathbb{N}$, where $\pi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is the second projection. Prove that $\psi(n+1)=(n+1) \psi(n)$. (You should be able to recognize that $\psi(n)=n$!, the factorial function).
(4) Prove that if $a_{1}, \ldots, a_{n} \in \mathbb{Z}$, then

$$
\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right| .
$$

(5) Prove that if $x, y \in \mathbb{Z}$, then $|x-y| \geq||x|-|y||$.

