Homework 11, Math 310, due November 19th, 2012
(1) Let $d>0$ be an integer. We have checked that if we define a relation on \mathbb{Z} by $a \sim b$ if d divides $a-b$ (remember this means $a-b=d k$ for some $k \in \mathbb{Z}$), then it is an equivalence relation. If you have not checked this before, check it now. One writes this relation as $a \equiv b(\bmod d)$, read as ' a is congruent to b modulo d ' when d divides $a-b$.
(a) Prove that the above equivalence relation has precisely d distinct equivalence classes.
(b) If $a \equiv b(\bmod d)$ and $a^{\prime} \equiv b^{\prime}(\bmod d)$, prove that $a+a^{\prime} \equiv$ $b+b^{\prime}(\bmod d)$ and $a a^{\prime} \equiv b b^{\prime}(\bmod d)$.
(c) Prove that given $a \in \mathbb{Z}$, there exists a b such that $a b \equiv 1$ $(\bmod n)$ if and only if $\operatorname{gcd}(a, d)=1$.
(2) Let $d, e>0$ be integers with $\operatorname{gcd}(d, e)=1$. Prove that if $a \equiv b$ $(\bmod d)$ and $a \equiv b(\bmod e)$, then $a \equiv b(\bmod d e)$.
(3) Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers with at least one of them non-zero. Prove that there exists a (unique) positive integer d such that $d \mid a_{i}$ for all i and if $e \mid a_{i}$ for all i, then $e \mid d$. This d is denoted by $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
(4) If $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$, prove that there exists integers b_{i} such that $\sum_{i=1}^{n} a_{i} b_{i}=d$.
(5) Let a, b be two non-zero integers. A positive integer l is called the lowest common multiple of a, b (abbreviated $\operatorname{lcm}(a, b))$ if $a|l, b| l$ and for any positive integer m, if $a|m, b| m$, then $l \mid m$. Let $d=\operatorname{gcd}(a, b)$ and write $a=d A, b=d B$ for integers A, B. Prove that $d A B$ satisfies both the properties of lcm above and thus $\operatorname{lcm}(a, b)=d A B$.

