Homework 12, Math 310, due November 26th, 2012
(1) Let $q \in \mathbb{Q}$. Prove that there exists $a, b \in \mathbb{Z}, b \neq 0$ such that $q=a / b$ and $\operatorname{gcd}(a, b)=1$.
(2) Prove that there is no rational number q such that $q^{2}=2$. (Hint: Assume there is and write $q=a / b$ as in the previous problem).
(3) Given $x<y$ with $x, y \in \mathbb{Q}$, prove that there exists a $z \in \mathbb{Q}$ with $x<z<y$.
(4) If $x>1$ is a rational number and $y \in \mathbb{Q}$, prove that there exists an $N \in \mathbb{N}$ such that for all $n \geq N, n \in \mathbb{N}$, we have $x^{n} \geq y$.
(5) If $x \in \mathbb{Q}$ and $n \in \mathbb{N}$, prove that $(1-x)\left(1+x+x^{2}+\cdots+x^{n}\right)=$ $1-x^{n+1}$.
(6) If $x>0$ is a rational number, prove that there exists an $N \in \mathbb{N}$ such that for all $n \geq N, n \in \mathbb{N}$, we have $x>1 / n$.

