Homework 12, Math 310, due November 26th, 2012

- (1) Let $q \in \mathbb{Q}$. Prove that there exists $a, b \in \mathbb{Z}, b \neq 0$ such that q = a/b and gcd(a, b) = 1.
- (2) Prove that there is no rational number q such that $q^2 = 2$. (Hint: Assume there is and write q = a/b as in the previous problem).
- (3) Given x < y with $x, y \in \mathbb{Q}$, prove that there exists a $z \in \mathbb{Q}$ with x < z < y.
- (4) If x > 1 is a rational number and $y \in \mathbb{Q}$, prove that there exists an $N \in \mathbb{N}$ such that for all $n \ge N, n \in \mathbb{N}$, we have $x^n \ge y$. (5) If $x \in \mathbb{Q}$ and $n \in \mathbb{N}$, prove that $(1-x)(1+x+x^2+\cdots+x^n) =$
- $1 x^{n+1}$.
- (6) If x > 0 is a rational number, prove that there exists an $N \in \mathbb{N}$ such that for all $n \ge N, n \in \mathbb{N}$, we have x > 1/n.