Homework 123 Math 310, Do not submit, not graded

- (1) Let A, B be any one of the sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ or \mathbb{R} though we have not constructed it yet. We say a function $f : A \to B$ is *increasing* if for any $a, a' \in A$ with a > a', we have f(a) > f(a').
 - (a) Prove that an increasing function as above is injective.
 - (b) Construct an example of an injective function (from $A \rightarrow B$, A, B as above) which is not increasing.
- (2) Let $f : \mathbb{N} \to \mathbb{Q}$ be a sequence and let $g : \mathbb{N} \to \mathbb{N}$ be an increasing function. We say that the sequence $f \circ g : \mathbb{N} \to \mathbb{Q}$ a subsequence of the sequence given by f. Prove that if the sequence given by f is a Cauchy sequence, so is the one given by any subsequence.
- (3) Let a be a fixed positive rational number. Choose (and fix) a natural number M > a. Define as usual, $n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$ (called *n factorial*) for any natural number *n*. By convention, we define 0! = 1.
 - (a) For any $n \in \mathbb{N}$ with $n \ge M$, show that $\frac{a^n}{n!} \le \frac{a^M}{M!} (\frac{a}{M})^{n-M}$.
 - (b) Using Problem 4 from Homework 12, show that, given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \ge N$, $\frac{a^n}{n!} < \epsilon$.
 - (c) We have proved in class that the sequence $\{x_n\}$ where $x_n = \sum_{k=0}^{n} b^n$ (the geometric series) is a Cauchy sequence if |b| < 1. Use this to prove (using the first part of this problem) that the sequence $\{y_n\}$ where $y_n = \sum_{k=0}^{n} \frac{a^k}{k!}$ is a Cauchy sequence. (As you have studied in Calculus, this sequence in the *limit* should give us e^a .)
- (4) Define as usual the choose function $\binom{n}{r}$ for $0 \le r \le n$ with $n \in \mathbb{N} \cup \{0\}$ as,

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

- (a) Prove that $\binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1}$.
- (b) Prove (by induction) the binomial theorem for $a, b \in \mathbb{Q}$ and $n \in \mathbb{N} \cup \{0\}$,

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^r b^{n-r}.$$