Homework 123 Math 310, Do not submit, not graded

(1) Let A, B be any one of the sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ or \mathbb{R} though we have not constructed it yet. We say a function $f: A \rightarrow B$ is increasing if for any $a, a^{\prime} \in A$ with $a>a^{\prime}$, we have $f(a)>f\left(a^{\prime}\right)$.
(a) Prove that an increasing function as above is injective.
(b) Construct an example of an injective function (from $A \rightarrow$ B, A, B as above) which is not increasing.
(2) Let $f: \mathbb{N} \rightarrow \mathbb{Q}$ be a sequence and let $g: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing function. We say that the sequence $f \circ g: \mathbb{N} \rightarrow \mathbb{Q}$ a subsequence of the sequence given by f. Prove that if the sequence given by f is a Cauchy sequence, so is the one given by any subsequence.
(3) Let a be a fixed positive rational number. Choose (and fix) a natural number $M>a$. Define as usual, $n!=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n$ (called n factorial) for any natural number n. By convention, we define $0!=1$.
(a) For any $n \in \mathbb{N}$ with $n \geq M$, show that $\frac{a^{n}}{n!} \leq \frac{a^{M}}{M!}\left(\frac{a}{M}\right)^{n-M}$.
(b) Using Problem 4 from Homework 12, show that, given $\epsilon>$ 0 , there exists an $N \in \mathbb{N}$ such that for all $n \geq N, \frac{a^{n}}{n!}<\epsilon$.
(c) We have proved in class that the sequence $\left\{x_{n}\right\}$ where $x_{n}=$ $\sum_{k=0}^{n} b^{n}$ (the geometric series) is a Cauchy sequence if $|b|<$ 1. Use this to prove (using the first part of this problem) that the sequence $\left\{y_{n}\right\}$ where $y_{n}=\sum_{k=0}^{n} \frac{a^{k}}{k!}$ is a Cauchy sequence. (As you have studied in Calculus, this sequence in the limit should give us e^{a}.)
(4) Define as usual the choose function $\binom{n}{r}$ for $0 \leq r \leq n$ with $n \in \mathbb{N} \cup\{0\}$ as,

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} .
$$

(a) Prove that $\binom{n+1}{r}=\binom{n}{r}+\binom{n}{r-1}$.
(b) Prove (by induction) the binomial theorem for $a, b \in \mathbb{Q}$ and $n \in \mathbb{N} \cup\{0\}$,

$$
(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{r} b^{n-r} .
$$

