Math 310, Homework 5, due 8th October 2012

You must justify all your answers, by giving a proof of your answer. You may use any property of numbers you have studied.

- (1) Assume we define $\Gamma \subset \mathbb{R} \times \mathbb{R}$ as below. Decide whether it is the graph of a function from \mathbb{R} to \mathbb{R} .
 - (a) $\Gamma = \{(x, y) | x > y\}.$

 - (a) $\Gamma = \{(x, y) | x > y\}.$ (b) $\Gamma = \{(x, y) | x = y\}.$ (c) $\Gamma = \{(x, y) | x^2 = y\}.$ (d) $\Gamma = \{(x, y) | x = y^2\}.$ (e) $\Gamma = \{(x, y) | x^2 = y^2\}.$
- (2) Decide whether the functions below are injective or surjective.
 - (a) $f : \mathbb{R} \to \mathbb{R}$, given by $f(x) = \sin x$.
 - (b) $f : \mathbb{R} \to \mathbb{Z}$, given by $f(x) = \lfloor x \rfloor$ where the right hand side is the largest integer $a \in \mathbb{Z}$ with $a \leq x$. (For example, $f(5) = 5, f(\pi) = 3, f(e) = 2$ etc.)
 - (c) $f : \mathbb{R} \to \mathbb{R}$, given by f(x) = |x|.

 - (d) $f : \mathbb{R} \to \mathbb{R}$, given by $f(x) = e^x$. (e) $f : \mathbb{R} \to \mathbb{R}$, given by $f(x) = \int_0^x e^t dt$.