Math 310, Homework 5, due 8th October 2012
You must justify all your answers, by giving a proof of your answer. You may use any property of numbers you have studied.
(1) Assume we define $\Gamma \subset \mathbb{R} \times \mathbb{R}$ as below. Decide whether it is the graph of a function from \mathbb{R} to \mathbb{R}.
(a) $\Gamma=\{(x, y) \mid x>y\}$.
(b) $\Gamma=\{(x, y) \mid x=y\}$.
(c) $\Gamma=\left\{(x, y) \mid x^{2}=y\right\}$.
(d) $\Gamma=\left\{(x, y) \mid x=y^{2}\right\}$.
(e) $\Gamma=\left\{(x, y) \mid x^{2}=y^{2}\right\}$.
(2) Decide whether the functions below are injective or surjective.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x)=\sin x$.
(b) $f: \mathbb{R} \rightarrow \mathbb{Z}$, given by $f(x)=\lfloor x\rfloor$ where the right hand side is the largest integer $a \in \mathbb{Z}$ with $a \leq x$. (For example, $f(5)=5, f(\pi)=3, f(e)=2$ etc.)
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x)=|x|$.
(d) $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x)=e^{x}$.
(e) $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(x)=\int_{0}^{x} e^{t} d t$.

