Homework 7, Math 310, due October 22nd, 2012

- (1) Define a relation on \mathbb{R} as follows. For $a, b \in \mathbb{R}$, $a \sim b$ if $a-b \in \mathbb{Z}$. Prove that this is an equivalence relation. Can you identify the set of equivalence classes with the unit circle in a natural way? (Hint: Trigonometric functions).
- (2) Let $\mathcal{C}(\mathbb{R})$ be the set of all continuous functions on \mathbb{R} . If $f, g \in \mathcal{C}(\mathbb{R})$ we say that $f \sim g$ if $\int_0^1 f dx = \int_0^1 g dx$. Show that this is an equivalence relation. Can you identify the set of equivalence classes with a familiar set?
- (3) Let C(ℝ) be as in the previous problem. Define a relation on C(ℝ) as follows. For f, g ∈ C(ℝ), f ~ g if there exists an open interval I containing 0 ∈ ℝ such that f(x) = g(x) ∀x ∈ I.
 (a) Prove that this is an equivalence relation.
 - (b) Prove that if $f \sim F$ and $g \sim G$, then $f + g \sim F + G$ and $fg \sim FG$.
 - (c) If $f \in \mathcal{C}(\mathbb{R})$ with $f(0) \neq 0$, show that there exists a $g \in \mathcal{C}(\mathbb{R})$ such that $fg \sim 1$, where 1 denotes the constant function 1. (The set of equivalence classes for this relation is usually denoted by \mathcal{O} and called the *ring of germs of continuous functions* at the origin. Notice by part 2) above, it makes sense to add and multiply elements of \mathcal{O} .)
- (4) Let P denote the set of all functions from a set S to the two element set $\{a, b\}$. Prove that there is a bijection from P to $\mathcal{P}(S)$, the power set of S.