Homework 9, Math 310, due November 5th, 2012
(1) For any $n \in \mathbb{N}$ consider the set $S_{n} \subset \mathbb{N}$ defined as $S_{n}=\{m \in$ $\left.\mathbb{N} \mid m^{2} \geq n\right\}$.
(a) Show that $S_{n} \neq \emptyset$ for any $n \in \mathbb{N}$.
(b) Calculate the minimal element of S_{10}, assured by induction.
(2) Given $M \in \mathbb{N}$, show that there exists an $N \in \mathbb{N}$ such that for all $n \geq N, n^{2}+n+1>M$.
(3) Define a function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ by, $f(a, b)=(a+1, a+b+1)$. So, by universal property, we get a function $\phi: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ so that $\phi(1)=(1,1)$ and $\phi(n+1)=f(\phi(n))$. Let $\pi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be the second projection, $\pi(a, b)=b$. Prove that for any $n \in \mathbb{N}$, $2 \pi \circ \phi(n)=n(n+1)$.
(4) Again, define $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ as $f(a, b)=\left(a+1, b+(a+1)^{2}\right)$. So, again we get a function $\phi: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ with $\phi(1)=(1,1)$ and $\phi(n+1)=f(\phi(n))$. Let π be as before. Show that $6 \pi(\phi(n))=$ $n(n+1)(2 n+1)$ for all $n \in \mathbb{N}$.

Here is a problem which you should not submit.
Given distinct points $P_{1}, P_{2}, \ldots, P_{n}$ in the plane such that the line joining any two contain a third from this collection, prove that they are all collinear.

