Midterm 2, Math 310, November 2nd, 2012
Read questions carefully. Please write legibly.
(1) (a) Given a relation \sim on a set A, state the three conditions which make it an equivalence relation.
(b) Let $A=\{a, b, c, d\}$ be a set with four distinct elements. Describe all subsets $R \subset A \times A$ which give an equivalence relation on A satisfying $a \sim d$. How many distinct equivalence classes are there in each of these cases?
(2) (a) Define injectivity for a function $f: A \rightarrow B$ for sets A, B.
(b) Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are injective, so is $g \circ f$.
(3) Assume Peano's axioms, addition satisfying the two properties, 1) $\sigma(m)=m+1, \forall m \in \mathbb{N}, 2) m+\sigma(n)=\sigma(m+n), \forall m, n \in \mathbb{N}$ and the associative law for addition. Prove that addition is commutative.
(4) (a) Define 'greater than' ($>$) and state the well-ordering principle.
(b) If $x, y, z \in \mathbb{N}$ and $x z>y z$, prove that $x>y$. (You may use the following without proofs. The two properties of addition and multiplication, associativity and commutativity of both of them, distributivity, and of course the well-ordering principle).

